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Structure

Main subject

Confinement mechanism in Landau gauge

◮ Relation to infrared propagators
◮ Gauge fixing problem

Two ‘spin-off’ projects

Deconfinement phase transition at T > 0 from the gluon propagator

Sign problem for fermions at µ > 0
with complex stochastic quantization (← no time in this talk . . . )

Now: introduction to the main subject . . .
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Confinement and infrared propagators

Signatures of confinement

Confining quark-antiquark potential (gauge-invariant)

◮ demands an explanation

Infrared behavior of gluon & ghost propagator (gauge-dependent)

◮ may provide an explanation

★ Gribov–Zwanziger scenario
– related to confinement via topological defects

★ Kugo–Ojima scenario

◮ here: Landau gauge, ∂µAµ = 0

q q̄

〈AA〉

〈cc̄〉
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Gluon & ghost propagator

Basic task

Gauge fixing

y

extract infrared Yang–Mills propagators

Question

Is the IR behavior of

scaling type or

decoupling type?
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Gluon & ghost propagator

Landau gauge, ∂µAµ = 0

Gluon propagator:

〈AA〉 ∝ δab
(

δµν − qµqν

q2

)

Dgl(q
2)

Ghost propagator:

〈cc̄〉 ∝ − δabDgh(q
2)

Dressing function ≡ q2 · Dgl/gh(q
2)
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IR propagators: continuum solutions in Landau gauge

One-parameter family of solutions from FRG & DSE (figs. from Fischer/Maas/Pawlowski ’08)

Gluon propagator Dgl Ghost dressing function q2Dgh

Infrared exponents

lim
q2→0

Dgl/gh(q
2) ∝ 1

(q2)κA/C+1
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IR propagators: continuum solutions in Landau gauge

One-parameter family of solutions from FRG & DSE (figs. from Fischer/Maas/Pawlowski ’08)

Gluon propagator Dgl Ghost dressing function q2Dgh

Infrared exponents (von Smekal et al. ’97, Lerche/von Smekal ’02, Zwanziger ’01, Pawlowski et al. ’03)

lim
q2→0

Dgl/gh(q
2) ∝ 1

(q2)κA/C+1
if scaling: κA = −2 κC

︸︷︷︸

=:κ

+
d − 4

2
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IR gluon & ghost propagator

Confinement mechanism ⇒ IR behavior

Confinement scenarios
(Gribov–Zwanziger, Kugo–Ojima)

−−−−−−−−−−−−−−−→
global BRST

infrared scaling

Problem

Lattice results: No scaling – rather decoupling (d = 3, 4)

IR behavior ⇒ confinement

Scaling solution and decoupling solutions are confining
(Braun/Gies/Pawlowski ’07)

Both violate positivity of the gluon propagator

At issue:

◮ Confinement mechanism

◮ Global BRST invariance scaling: X decoupling: ✕
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Gribov problem

A glimpse at configuration space

Many Gribov horizons . . .

first Gribov horizon: ∂Ω Gauge fixing:
∂µAµ(x) = 0  hypersurface

Different Gribov regions
on gauge fixing surface

◮ distinguished by sign of
det(−∂D) =

∏

n λn
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Gribov problem

Relevant regions in configuration space

Ω

Λ

∂µAµ = 0

G.f.  −∂D > 0:
1st Gribov region Ω

Still multiple gauge
copies (Gribov ’78, Singer ’78)

Gribov ambiguity

Unique copy:
Fundamental
modular region Λ

NP-hard
optimization problem
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Configuration space & gauge fixing

Motivation

Why a non-standard gauge fixing algorithm?

◮ Hope: Different sampling of configuration space.
◮ Ideally, avoid . . .

★ possible bias (e. g. against ∂Ω or Λ)

★ breaking of global BRST – remedy: topological gauge fixing
(von Smekal et al. ’07, ’08) (not here)

Previous lattice results

Standard lattice g. f.  decoupling (d = 3, 4)

Global maximization of g. f. functional (approach Λ? only attempted)

 quantitative effect, still decoupling (Bornyakov et al. ’08, Bogolubsky et al. ’08)

Here: different gauge fixing methods
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Gauge fixing methods

Different methods employed here

1. Stochastic gauge fixing β ≡
2Nc
g2 > 0

2. Standard gauge fixing here: β = 0

3. ‘max-B ’ gauge (non-perturbative completion of Landau gauge) here: β = 0

4. Change of boundary conditions

g.f. per copy
std. non-std.

first copy 2. 1., 4.

best copy 3.

here: ‘best’ =̂ IR max. ghost

◮ alt.: global max. of g.f. functional ( 10% effect on ghost)
(Bornyakov et al. ’08, Bogolubsky et al. ’08)
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Stochastic gauge fixing: Intuitive picture

Los Alamos/
standard gauge fixing

overrelaxation/...)
(e.g. heatbath + 

∂µAµ

Γ

(cp. Nakamura/Saito/Sakai ’04)
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Stochastic gauge fixing: Intuitive picture

standard gauge fixing

Langevin
dynamics &

(e.g. heatbath + 
overrelaxation/...)

gauge tr.)
(alternation of

Los Alamos/

∂µAµ

Γ

(cp. Nakamura/Saito/Sakai ’04)

Langevin eq. incl. gauge
force (Zwanziger ’81)

more local than standard g. f.

⇒ possibly different sampling
of config’ space
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Langevin dynamics (stochastic quantization: Parisi/Wu ’81, Batrouni et al. ’85, Damgaard/Hüffel ’87)

Langevin equation in fictitious time θ

dA =(−∇S + η)dθ

η = Gaussian white noise

−−−−−−→
equilibrium

̺[A] ∝ e−S[A]

Correct convergence?

◮ S ∈ R: X
◮ S ∈ C: caution required

possibility of

· runaway trajectories
· wrong convergence

but maybe useful where other methods fail!

★ → sign problem . . .
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Langevin dynamics with gauge fixing (continuum)

Supplement Langevin equation by gauge force (Zwanziger ’81)

dA =(−∇S + Dv + η)dθ

η = Gaussian white noise v := ∂µAµ

−−−−−−→
equilibrium

̺[A] ∝ e−S[A] & ∂µAµ = 0

gauge orbit

gauge fixing force
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Langevin dynamics with gauge fixing (continuum)

Supplement Langevin equation by gauge force (Zwanziger ’81)

dA =(−∇S + Dv + η)dθ

η = Gaussian white noise v := ∂µAµ

−−−−−−→
equilibrium

̺[A] ∝ e−S[A] & ∂µAµ = 0

Inside Ω: restoring towards gauge fixing surface
outside Ω: repulsive directions

Ω∂Ω ∂Ω
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Lattice implementation

gauge transformations of link variables Uµ(x)
alternating with dynamical updates

here: quenched SU(2)

Nc = 3 (Bogolubsky et al. ’07, Cucchieri et al. ’07, Oliveira et al. ’07, Sternbeck et al. ’07)

or dyn. fermions (Ilgenfritz et al. ’06)

)

not crucial
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Propagators from stochastic gauge fixing (Pawlowski/DS/Stamatescu ’09)

gluon prop. ghost d.f. scaling

d = 2

d = 3

d = 4
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Propagators from stochastic gauge fixing

IR exponent κ: Scaling solution vs. lattice measurement

d scaling prediction κZ κ
ghost exp. from gluon ghost exp. from ghost

2 0.2 0.19 0.17 (2002) X

3 0.4 0.25 0.25 (403) / 0.2 (803) ×
4 0.6 0.5 0.26 (204) / 0.19 (404) ×

⇒ Further evidence for standard lattice scenario:
decoupling in d = 3, 4
– also with stochastic gauge fixing

(Agreement with previous results from standard methods, e.g.:
2D: Maas ’07; 3D: Cucchieri/Mendes ’03, 4D: Bogolubsky et al. ’07, ’08, ’09, Cucchieri/Mendes ’07)
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Faddeev–Popov operator spectrum

-0.02 -0.01 0 0.01 0.02
λ

0

0
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600
stochastic quantization
∂Ω

imperfect g. f.

∂µAµ

∆2 ∈ O
(
10−3

)

by SQ ∆a=̂∂µAa
µ

Peak near ∂Ω

→ Gribov–Zwanziger scenario?
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Faddeev–Popov operator spectrum
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Faddeev–Popov operator spectrum
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λ
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∂Ω

∆2 → 0
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by SQ & step size → 0

Peak disappears for
sufficiently small ∆2
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Upshot of stochastic gauge fixing

Confirmation of standard lattice scenario
in d = 2, 3, 4
despite different gauge fixing algorithm

Now for some less expected findings . . .
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Strong-coupling limit β = 0

Motivation

2Nc

g2
= β → 0 =̂ a → ∞

⇒ IR behavior visible at large aq

4D: Conformal behavior (Sternbeck/von Smekal ’08)

Here: d = 2 & 3

Interpretation under debate

◮ position 1 (Cucchieri/Mendes ’09)

“lattice sees

★ decoupling in d > 2,
★ scaling in d = 2”

◮ position 2 (Maas/Pawlowski/DS/Sternbeck/von Smekal ’09)

“issue not settled”
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Running coupling β = 0, std. g. f.

eff. running coupling

αeff
S =

g2

4π
qd+2DglD

2
gh
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Running coupling, two dimensions β = 0, std. g. f.
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Running coupling, three dimensions β = 0, std. g. f.
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Running coupling, four dimensions β = 0, std. g. f.
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Running coupling & local exponents β = 0, std. g. f.
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Running coupling & local exponents β = 0, std. g. f.
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Two vs. three dimensions: Local exponents β = 0, std. g. f.
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Two vs. three dimensions: Propagators β = 0, std. g. f.
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Two vs. three dimensions: Dgl(q = 0) β = 0, std. g. f.
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Upshot of standard gauge fixing at β = 0

d = 2, 3 and 4

no uniform scaling at all aq

possible scaling window

◮ moves towards larger aq from d = 2 to d = 4
◮ same pattern at β > 0
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Room for speculation . . .

gluon prop., β > 0 running coupling, β = 0
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Outline

1 Introduction

2 Confinement mechanism and infrared propagators
Stochastic quantization for gauge fixing
Strong-coupling limit in d = 2, 3, 4
Gribov ambiguity in the strong-coupling limit
Free boundary conditions

3 Deconfinement phase transition at T > 0

4 Summary
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Impact of Gribov ambiguity

Basic idea of ‘Landau max-B ’ gauge (Maas ’09)

Functional methods  one-parameter family of solutions
(Fischer et al. ’08, Boucaud et al. ’08)

Analogous lattice procedure

◮

parameter B :=
Dgh(qmin)

Dgh(Q)

◮ for each config’

★ fix ncopy times to Landau gauge
★ choose the copy with

B = max (here)

Here: first simulations at β = 0, in d = 2, 3
β > 0: Maas ’09 . . .
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Impact of Gribov ambiguity

0.1 1
aq

1

a2 q2 D
gh

20
3
, n

copy
=1

64
3
, n

copy
=1

d = 3: ghost dressing function

increase ncopy . . .
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Impact of Gribov ambiguity
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Impact of Gribov ambiguity
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Impact of Gribov ambiguity
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Impact of Gribov ambiguity
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No ‘saturation’
at 600 copies
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Impact of Gribov ambiguity
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Impact of Gribov ambiguity
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third lowest aq
intermediate aq (≈1.6)
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d = 3: ghost dressing function
vs. n−1

copy (203)

No ‘saturation’
at 600 copies (log-log plot)

⇒ Such strong effect that
no ncopy → ∞ extrapolation
possible
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Impact of Gribov ambiguity on αeff
S

αeff
S ∝ D2

ghDgl

Gribov copy effect in
max-B gauge:

◮ Large impact on
infrared ghost

◮ Small impact on
infrared gluon
here: 203
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Impact of Gribov ambiguity on αeff
S
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Impact of Gribov ambiguity on αeff
S
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Impact of Gribov ambiguity on local exponents
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Impact of Gribov ambiguity on local exponents
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Impact of Gribov ambiguity

Interpretation

Gribov ambiguity more severe than expected

◮ Should also hold at β > 0

No IR solution type (scaling vs. decoupling) excluded

◮ Stronger & diff. Gribov copy effect than by ‘global maximization’
(e.g. Bogolubsky et al. ’05, ’07, ’09, Bornyakov et al. ’08, ’09)

★ O (100%) vs. 10% for ghost
gluon: small effect vs. 20%

★ ‘over-scaling’ vs. decoupling
but: ‘over-scaling’ ruled out in continuum
(uniqueness proof: Fischer et al. ’06, ’09, Huber et al. ’07)
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Outline

1 Introduction

2 Confinement mechanism and infrared propagators
Stochastic quantization for gauge fixing
Strong-coupling limit in d = 2, 3, 4
Gribov ambiguity in the strong-coupling limit
Free boundary conditions

3 Deconfinement phase transition at T > 0

4 Summary
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Free boundary conditions

x x + µ̂

x + ν̂
a = a(β)

Uµ(x)
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Free boundary conditions

x x + µ̂

x + ν̂
a = a(β)

Uµ(x)

Links at boundary vanish  
‘finite lattice’

Daniel Spielmann (ITP Heidelberg) 27 / 42



Free boundary conditions: Why & how?

Free b.c. & Landau gauge ⇒ Dgl(q = 0) = 0 (Schaden/Zwanziger ’94)

◮ Maybe obtain scaling?!

Caveat: Non-periodicity
⇒ modify def. of Dgl

‘Center def.’

Dgl(q) ∝
∑

a,µ

∑

x

〈
Aa

µ(x)Aa
µ(c)

〉
cos (q · (x − c))

◮ factor of V lacking
much more config’s required

standard g.f. (except for b.c.)

‘first copy’ approach
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◮ Maybe obtain scaling?!
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Free boundary conditions: Why & how?

Uµ(x)

x + µ̂x

2d ‘centers’
of the lattice
instead of V sites of
the lattice

Daniel Spielmann (ITP Heidelberg) 28 / 42



Gluon propagator from free b. c., two dimensions
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Gluon propagator from free b. c., two dimensions

0.01 0.1 1
aq

0.1

1

D
gl

periodic b.c., 560
2

p. b.c., 288
2

p. b.c., 100
2

free b.c., 80
2

f. b.c., 160
2

f. b.c., 280
2

β = 0 d = 2

Periodic b.c.

vs. free b.c.
(typically 500,000 config’s)

◮ consistent with
same V → ∞ limit
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Gluon propagator from free b. c., three dimensions
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Gluon propagator from free b. c., three dimensions
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3
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3
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3
, free b.c. (center def., ≈1.8⋅10
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finite coupling d = 3

Periodic vs. free b. c.
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Gluon propagator from free b. c., three dimensions

0.01 0.1 1
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periodic b.c., 80
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Gluon propagator from free b. c., three dimensions
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periodic b.c., 320
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Gluon propagator from free b. c., three dimensions
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Gluon propagator from free b. c., three dimensions

0.01 0.1 1
aq

1

D
gl

periodic b.c., 480
3

p. b.c., 320
3

p. b.c., 80
3

free b.c., 60
3

f. b.c., 40
3

f. b.c., 20
3

β = 0 d = 3

V → ∞: Free b. c. prop. not
below periodic b. c. prop.

⇒ no uniform scaling

603 : 106 config’s
403 : 2.5 · 106 config’s
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Gluon propagator from free b. c., four dimensions
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Gluon propagator from free b. c., four dimensions
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4
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4
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4
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12
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Finite coupling d = 4
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rel. small volume effect
V = (34 fm)4
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much stronger volume effect
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Gluon propagator from free b. c., four dimensions
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Gluon propagator from free b. c., four dimensions
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Gluon propagator from free b. c., four dimensions
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Gluon propagator from free b. c., four dimensions

1
aq

1

D
gl

40
4
, periodic b.c.

10
4
, free b.c.

16
4
, f. b.c.

22
4
, f. b.c.

fit, κ≈0.56

β = 0 d = 4

Periodic b.c. . . .

Free b.c.

◮ convergence against
same result

224 : > 400, 000 config’s
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Non-periodic gauge transformations

Motivation

another way to enforce
Dgl(0) = 0 (for V →∞)

Implementation

thermalize periodic
config’ on (L − 1)d

lattice

embed in Ld lattice

complete links

◮ perpendicular links:
zero

◮ parallel links: periodic

gauge fixing via non-per.
g. t. on finite lattice
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Motivation

another way to enforce
Dgl(0) = 0 (for V →∞)

Implementation

thermalize periodic
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Non-periodic gauge transformations

Two possibilities

combine with . . .

◮ . . . free b. c.
modified Dgl on Ld

★  same result as
usual fbc

◮ . . . periodic b. c.
std. Dgl on (L − 1)d

Daniel Spielmann (ITP Heidelberg) 33 / 42



Non-periodic gauge transformations
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1/L

0

0.01

0.02

0.03

D
gl

(0
)

. . . here: combined with
periodic b. c.

β = 0 d = 3
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Non-periodic gauge transformations

0 0.05 0.1 0.15 0.2
1/L

0

0.1

0.2

D
gl

(0
) 

[G
eV

−2
]

. . . here: combined with
periodic b. c.

β = 2.2 d = 4

lim
V→∞

Dgl(0) = 0

Daniel Spielmann (ITP Heidelberg) 33 / 42



Non-periodic gauge transformations
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data at intermed. aq (κ≈0.365)
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periodic b. c.

contrasted with usual
periodic b. c.

β = 0 d = 3

volume effect . . .
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Non-periodic gauge transformations
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3
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3

non-periodic g.t. (periodic b.c.), 200
3

n.-p. g.t. (p.b.c.), 150
3

n.-p. g.t. (p.b.c.), 120
3

n.-p. g.t. (p.b.c.), 80
3

n.-p. g.t. (p.b.c.), 40
3

fit of 480
3

data at intermed. aq (κ≈0.365)

. . . combined with
periodic b. c.

contrasted with usual
periodic b. c.

β = 0 d = 3
on large lattice:
‘above’ scaling solution

yet still ‘below’ decoupling branch

⇒ comparatively slow effect
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Non-periodic gauge transformations
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Non-periodic gauge transformations vs. free b. c.
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Upshot of free b. c. and non-periodic g. t.

Free b. c.

Large V : Same result as pbc (except for smallest momenta)

 Nontrivial confirmation of standard lattice scenario

Non-periodic g. t.

Again, no scaling behavior for V → ∞
But surprisingly slow volume effect (if combined with pbc)
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Summary regarding confinement mechanism

Stochastic quantization for gauge fixing

◮ Confirmation of standard lattice scenario
despite different algorithm

Strong-coupling limit

◮ Scaling branch
◮ But no uniform scaling –

not even in d = 2 (!)

‘max-B ’ gauge
◮ Huge effect of Gribov ambiguity

★ Surprising ‘over-scaling’
★ No subset of solutions can be excluded yet

Free b. c.

◮ Dgl IR suppressed on moderate V
◮ But ‘decoupling branch’ restored for V → ∞ (d = 3, 4)

◮ Non-periodic g. t. with periodic b. c.:

★ much slower approach to dec. branch
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Outlook regarding confinement mechanism

Current results surprise and raise new questions
◮ Landau max-B gauge

★ V → ∞ and ncopy → ∞ limit
★ β > 0 (Maas ’09 . . . )

◮ Non-periodic g. t.

★ explanation for volume effect?

BRST invariant lattice formulation . . . (von Smekal et al. ’07, ’08 . . . )
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Outline

1 Introduction

2 Confinement mechanism and infrared propagators
Stochastic quantization for gauge fixing
Strong-coupling limit in d = 2, 3, 4
Gribov ambiguity in the strong-coupling limit
Free boundary conditions

3 Deconfinement phase transition at T > 0

4 Summary
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T > 0 studies

Motivation

Recent study of SU(2) & SU(3) YMT in d =3 + 1 (Fischer/Maas/Müller ’10)

◮ Information about deconfinement PT from gluon prop.

Here: SU(2) in 2 + 1 dim.

◮ finer resolution
◮ PT also of 2nd order
◮ information about universality class ξ ∝

˛

˛

˛

β
βc
− 1

˛

˛

˛

ν

★ d = 3 + 1: 3d Ising (ν ≈ 0.63)
★ d = 2 + 1: 2d Ising (ν = 1) (Engels et al. ’97)

Longitudinal resp. transverse gluon propagator

(Dgl)
ab
µν (q) = Dab

T (q0, ~q)PT
µν(q) + Dab

L (q0, ~q)PL
µν(q).

both transverse in full d-dim’ space (Landau gauge)
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Longitudinal & transverse gluon propagator at T > 0
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T =
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Lt a(β)

Longitudinal gluon
propagator
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Longitudinal & transverse gluon propagator at T > 0
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Longitudinal & transverse gluon propagator at T > 0
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Longitudinal & transverse gluon propagator at T > 0
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Longitudinal & transverse gluon propagator at T > 0
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Longitudinal & transverse gluon propagator at T > 0
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Longitudinal & transverse gluon propagator at T > 0
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⇒ not sensitive to PT
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Longitudinal & transverse gluon propagator at T > 0

DL(q, β) DT (q, β)
1282 × 4, βc = 6.5364
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Longitudinal & transverse gluon propagator at T > 0

⇒ strong response to phase transition in chromoelectric sector

more quantitative analysis:
consider electric screening mass

mL =
1

√

DL(0)
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Longitudinal & transverse gluon propagator at T > 0

⇒ strong response to phase transition in chromoelectric sector
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Electric screening mass vs. β
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in line with 2nd order PT

volume effect weak
beyond Ls = 128

now: closer look at critical
behavior . . .
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Electric screening mass vs. β
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Electric screening mass vs. temperature
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set a scale via the string
tension
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Electric screening mass vs. temperature
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Electric screening mass vs. temperature
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Results

Tc ≈ 1.08
√
σ (Lt = 4)

Tc ≈ 1.11
√
σ (Lt = 6)

cp. with literature:
Tc ≈ 1.12

√
σ X

(Sternbeck/von Smekal ’09; see also

Liddle/Teper ’08)

aim here:

not ultimate precision,

but evidence that the gluon
propagator carries quantitative
information about the critical
behavior
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T > 0 studies: upshot

Critical behavior of SU(2) YMT in d = 2 + 1
from the DL

◮ Correct βc resp. Tc

◮ Consistent with expected critical exponent ν
◮ ⇒ gauge-invariant information from a gauge-dependent quantity

Caveat: different picture for larger Lt?
(Cucchieri/Mendes: recent results in d = 3 + 1, not yet published)
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Outline

1 Introduction

2 Confinement mechanism and infrared propagators
Stochastic quantization for gauge fixing
Strong-coupling limit in d = 2, 3, 4
Gribov ambiguity in the strong-coupling limit
Free boundary conditions

3 Deconfinement phase transition at T > 0

4 Summary
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Summary regarding confinement mechanism

Stochastic quantization for gauge fixing

◮ Confirmation of standard lattice scenario
despite different algorithm

Strong-coupling limit

◮ Scaling branch
◮ But no uniform scaling –

not even in d = 2 (!)

‘max-B ’ gauge
◮ Huge effect of Gribov ambiguity

★ Surprising ‘over-scaling’
★ No subset of solutions can be excluded yet

Free b. c.

◮ Dgl IR suppressed on moderate V
◮ But ‘decoupling branch’ restored for V → ∞ (d = 3, 4)

◮ Non-periodic g. t. with periodic b. c.:

★ much slower approach to dec. branch
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Outlook regarding confinement mechanism

Current results surprise and raise new questions
◮ Landau max-B gauge

★ V → ∞ and ncopy → ∞ limit
★ β > 0 (Maas ’09 . . . )

◮ Non-periodic g. t.

★ explanation for volume effect?

BRST invariant lattice formulation . . . (von Smekal et al. ’07, ’08 . . . )
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T > 0 studies: upshot

Critical behavior of SU(2) YMT in d = 2 + 1
from the DL

◮ Correct βc resp. Tc

◮ Consistent with expected critical exponent ν
◮ ⇒ gauge-invariant information from a gauge-dependent quantity

Caveat: different picture for larger Lt?
(Cucchieri/Mendes: recent results in d = 3 + 1, not yet published)
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Outline

5 General backup slides

6 Sign problem and stochastic quantization: Thirring model at µ > 0
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Confinement scenarios

Gribov-Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .
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Gribov-Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .

◮ In Landau gauge:
IR vanishing of gluon propagator (horizon condition).
(‘IR slavery’ scenario of quark confinement, D ∼ 1/q4, obsolete.)
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Confinement scenarios

Gribov-Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .

◮ In Landau gauge:
IR vanishing of gluon propagator (horizon condition).
Ghost dressing function divergent in the IR.
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Confinement scenarios

Kugo-Ojima scenario (Kugo/Ojima ’79, review: Nakanishi/Ojima ’90)

Confinement by BRST quartet mechanism

◮ ≈̂ Gupta-Bleuler in QED, but applies also to transversal gluons

Integral part of Kugo-Ojima criterion:
Well-defined global color charge
⇐⇒

1 mass gap &

2 (in Landau gauge) IR enhanced ghost propagator
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Confinement scenarios and correlation functions

Implications in a nutshell

Kugo–Ojima

◮ (BRST quartet mechanism, ≈̂ Gupta-Bleuler in QED)

κ > 0

Gribov–Zwanziger (stronger implications)

◮ (confinement by config’s close to 1st Gribov horizon)

κ > 0 for ghost, κ > 1/2 for gluon (i.e. κA < −1 )

I.e.:

◮ Ghost dressing function IR divergent
◮ Gluon propagator IR vanishing
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Basics of stochastic quantization

Langevin dynamics

Stochastic quantization (Parisi/Wu ’81): d-dim. quantum system =̂
(d + 1)-dim. classical system with random fluctuations

Stochastic process in additional time
Equilibrium distrib. = path-integral measure, i. e. exp(−S) (Euclidean space)

Represented by Langevin eq.

dx = Kxdθ
︸ ︷︷ ︸

drift

+ η(θ)dθ
︸ ︷︷ ︸

diffusion

with Gaussian white noise η 〈η(θ)η(θ′)〉 = 2δ(θ − θ′)

◮ related to Wiener process, describing Brownian motion
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Basics of stochastic quantization

Langevin dynamics

Stochastic quantization (Parisi/Wu ’81): d-dim. quantum system =̂
(d + 1)-dim. classical system with random fluctuations

Stochastic process in additional time
Equilibrium distrib. = path-integral measure, i. e. exp(−S) (Euclidean space)

Represented by Langevin eq.

dx = −∇S dθ
︸ ︷︷ ︸

drift

+ η(θ)dθ
︸ ︷︷ ︸

diffusion

Correct convergence?

◮ S ∈ R: X (if S has lower bound)

◮ S ∈ C: caution required
(runaway trajectories or wrong convergence possible),

but maybe useful where other methods fail!
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Lattice implementation of stochastic quantization

Dynamics

Lattice Langevin eq. with step size ε (e. g. Batrouni et al. ’85)

Uµ(x) → exp(iσaF a
µx)Uµ(x)

with force F a
µx = iε∇xµaS [U]

︸ ︷︷ ︸

drift

+
√
εηxµa

︸ ︷︷ ︸

diffusion

Gauge fixing

. . . via Zwanziger’s drift term (Rossi et al. ’88)

Ω(x) = exp

(

. . . · σa ∆a

α

)

(

general lattice g.t.: Uµ(x) → Ω(x)Uµ(x)Ω†(x + µ̂)
)
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Lattice implementation of stochastic quantization

Dynamics

Lattice Langevin eq. with step size ε (e. g. Batrouni et al. ’85)

Uµ(x) → exp(iσaF a
µx)Uµ(x)

with force F a
µx = iε∇xµaS [U] +

√
εηxµa

Gauge fixing

. . . via Zwanziger’s drift term (Rossi et al. ’88)

Ω(x) = exp

(

. . . · σa ∆a

α

)

∆a=̂∂µAa
µ, α: gauge parameter
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Lattice implementation of stochastic quantization

Alternative lattice formulation of the dynamics:
Random walk:

U ′µ(x) = exp(iAb
µσ

b)Uµ(x)

with contributions ±η (fixed size) to Ab
µ(x),

accepted with probability

p =
1

2

(

1 ± tanh

(
1

2
ηi∇xµaS [U]

))
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Gauge fixing parameter and accuracy of g. f.

0 0.02 0.04 0.06 0.08 0.1 0.12
α

1e-05

0.001

∆2

η=0.03
η=0.003

∃ optimal α for given
parameters
(small, but non-zero)
here: random walk
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Propagators from stochastic gauge fixing

Bottom line

Confirmation of
standard lattice results . . .

2D: scaling, 3&4D: decoupling
e.g.

2D: Maas ’07

3D: Cucchieri/Mendes ’03

4D: Sternbeck et al. ’05, ’06,
Bogolubsky et al. ’07, ’08, ’09,
Cucchieri/Mendes ’07 . . .

. . . with alternative
gauge fixing method
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Propagators from stochastic gauge fixing

0 0.5 1 1.5 2 2.5 3
q [GeV]

0
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1
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D
gl
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G

eV
-2

]

200
2

Gluon propagator

2D: compatible with IR
scaling

κ ≈ 0.2, as expected

But: β = 0 results raise new questions
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Gluon propagator

3D: Peak, but IR non-zero
 decoupling

But: at β = 0, 3D similar to 2D
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Propagators from stochastic gauge fixing
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Gluon propagator

4D: IR non-zero
 decoupling
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Propagators from stochastic gauge fixing

0.1 1
q [GeV]

1

q2 D
gh

200
2

Ghost dressing function

2D: IR divergent
κ ≈ 0.2

as expected for scaling

consistent with gluon
data

But: different picture at β = 0
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Propagators from stochastic gauge fixing

0.1 1
q [GeV]

1

q2 D
gh

40
3
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3
, fit

Ghost dressing function

3D: tends towards decoupling
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Propagators from stochastic gauge fixing

0.1 1
q [GeV]

1

q2 D
gh

20
4

40
4

20
4
, fit

Ghost dressing function

4D: tends towards decoupling
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Discretization artifacts at β = 0

Idea

Usually: cylinder cut
 momenta near
diagonal

Now cp. with
on-axis momenta

⇒ Assess effect of
breaking rotational
invariance
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Discretization artifacts at β = 0
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Discretization artifacts at β = 0
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, on-axis momenta

30
2
, on-axis

60
2
, diagonal

30
2
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d = 2

Diagonal mom.

On-axis mom.

◮ closer to scaling
behav.

Daniel Spielmann (ITP Heidelberg) 51 / 42



Discretization artifacts at β = 0
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Discretization artifacts at β = 0
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Discretization artifacts at β = 0
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Discretization artifacts at β = 0
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20
4
, on-axis momenta

14
4
, on-axis

20
4
, space diagonal momenta

14
4
, space diagonal

d = 4

Space-diag. mom.

On-axis mom.

◮ Effect weaker
at larger d
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Discretization artifacts at β = 0
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34
3
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face diagonal
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⇒ Discretization problem
at large aq

Now for a stronger
effect: Gribov copies . . .
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Strong-coupling limit: Two dimensions

0.01 0.1 1
aq

1

a2 q2 D
gh

288
2
, plane wave source

’UV’ fit, 288
2
, plane wave s.

Ghost propagator

plane-wave source  precise
result (κ ≈ 0.37)

local κ

◮ monotonically rising
◮ in general κ 6= κZ

⇒ no scaling

cp. with point source
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local
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κ
local

, δ=20 (280
2
, 3.7⋅10

4
 meas., point source)

scaling prediction

Ghost propagator

plane-wave source  precise
result (κ ≈ 0.37)

local κ

◮ monotonically rising
◮ in general κ 6= κZ

⇒ no scaling

cp. with point source
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Strong-coupling limit: Three dimensions

0.01 0.1 1
aq

1

D
gl

480
3
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3

80
3

40
3

Gluon propagator

. . . at different V

finite V behavior of Dgl(0)

◮ decoupling branch
survives in V → ∞ limit

local κZ

◮ qualitatively similar
to 2D case
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Strong-coupling limit: Three dimensions
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finite V behavior of Dgl(0)

◮ decoupling branch
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Strong-coupling limit: Three dimensions

0.1 1
aq

1

a2 q2 D
gh

Ghost propagator

ghost dressing function

local κ

◮ monotonically rising
◮ κ 6= κZ

◮ resembles 2D case
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Strong-coupling limit: Three dimensions

0.1 1
aq

0

0.1

0.2

0.3

0.4

0.5
(κ

Z
)
local

, δ=1 (40
3
, 5⋅10

5
 meas.)

(κ
Z
)
local

, δ=5

κ
local

, δ=1 (64
3
, 57 meas.)

d=3

0.1 1
aq

0

0.1

0.2

0.3

0.4

0.5
(κ

Z
)
local

, δ=1 (288
2
, 2.4⋅10

5
 meas.)

(κ
Z
)
local

, δ=10

κ
local

, δ=1 (288
2
, 76 meas.)

scaling prediction

d=2

Ghost propagator

ghost dressing function

local κ

◮ monotonically rising
◮ κ 6= κZ

◮ resembles 2D case
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Strong-coupling limit: Four dimensions

1
aq

0

0.2

0.4

0.6

0.8

κ
local

, 24
4

κ
local

, 32
4

κ
local

, 56
4

(κ
Z
)
local

, 24
4

(κ
Z
)
local

, 32
4

(κ
Z
)
local

, 56
4

scaling prediction

local κ & κZ

additional analysis of
previous 4D data
(Sternbeck/von Smekal ’08)

relation to effective running
coupling . . .
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Importance of IR asymptotics

What κ may tell about confinement

IR asymptotics of Dgl(q
2), Dgh(q

2)
 Test predictions of confinement scenarios

E.g.: Violation of reflection positivity by IR non-divergent gluon
propagator (lattice: Bowman et al. ’07 (4D), Cucchieri et al. ’05 (3D))
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How to sample the configuration space

Possible requirements on the algorithm

Find either of the following:
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Fundamental modular region Λ (free of Gribov copies)
=̂ NP-hard optimization problem

Entire Gribov region Ω with Faddeev–Popov weight

◮ (Conjecture: Ω & Λ equiv. for expectation values (Zwanziger ’04))
◮ Restriction to Ω automatically (by g.f.)

precise distribution nontrivial

Bias towards Gribov horizon ∂Ω (Gribov–Zwanziger sc.: config’s near
∂Ω ∩ ∂Λ account for confinement)
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Fundamental modular region Λ (free of Gribov copies)
=̂ NP-hard optimization problem

Entire Gribov region Ω with Faddeev–Popov weight

◮ (Conjecture: Ω & Λ equiv. for expectation values (Zwanziger ’04))
◮ Restriction to Ω automatically (by g.f.)

★ Faddeev–Popov operator is Hessian of
R

d4x |ωA|2, which is minimized
by numerical Landau g. f.;

precise distribution nontrivial

Bias towards Gribov horizon ∂Ω (Gribov–Zwanziger sc.: config’s near
∂Ω ∩ ∂Λ account for confinement)
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Confinement scenarios

Gribov–Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .
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Confinement scenarios

Gribov–Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .

◮ In Landau gauge:
IR vanishing of gluon propagator (horizon condition).
(‘IR slavery’ scenario of quark confinement, D ∼ 1/q4, obsolete.)

Daniel Spielmann (ITP Heidelberg) 57 / 42



Confinement scenarios

Gribov–Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .

◮ In Landau gauge:
IR vanishing of gluon propagator (horizon condition).
Ghost dressing function divergent in the IR.
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Confinement scenarios

Kugo–Ojima scenario (Kugo/Ojima ’79, review: Nakanishi/Ojima ’90)

Confinement by BRST quartet mechanism

◮ ≈̂ Gupta-Bleuler in QED, but applies also to transversal gluons

Integral part of Kugo–Ojima criterion:
Well-defined global color charge
⇐⇒

1 mass gap &

2 (in Landau gauge) IR enhanced ghost propagator
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2 (in Landau gauge) IR enhanced ghost propagator
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Free boundary conditions

Sketch of proof of Dgl(0) = 0

in general:

Dgl(0) ∝
∑

x ,y

〈
Aa

µ(x)Aa
µ(y)

〉
resp.

∑

x

〈
Aa

µ(x)Aa
µ(c)

〉

Qν(xν) :=
∑

x
xν fixed

Aν(x)

∂µAµ(x) = 0 ⇒
∑

x
xν fixed

∂µAµ(x) = 0 ⇒ Qν(xν) − Qν(xν − 1) = 0

for free b. c.: Qν(0) = Qν(L − 1) = 0 ⇒ Qν(xν) = 0

⇒ Dgl(0) = 0 �
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Outline

5 General backup slides

6 Sign problem and stochastic quantization: Thirring model at µ > 0
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Thirring model: motivation

warming up for full QCD . . .

fermionic model with a sign problem

initially: investigate “Silver Blaze” problem

◮ below µc , observables independent of µ
◮ onset differs from full to phase quenched theory (S→Re S)
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Sign problem in a nutshell

Sign problem

Z =

∫

DU e−SG det M[U] =

∫

DU e−SG+ln det M[U] =

∫

DU e−S

det M, thus S , complex
standard MC (importance sampling) not feasible

Possible solutions

Reweighting (Barbour et al. ’98; Fodor/Katz ’02)

Taylor expansion (Ejiri et al. ’04; Gava/Gupta ’05)

Imaginary µ (de Forcrand/Philipsen ’03)

Complex stochastic quantization

◮ Promising results for simple models (Aarts/Stamatescu ’08)

◮ Caution required (runaway trajectories? wrong convergence?)

◮ But maybe useful where other methods fail!
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Thirring model in the continuum

Thirring model in d = 2 + 1

LThirring = ψ̄i (6∂ + m+µγ0)ψi +
g2

2Nf

(
ψ̄iγνψi

)2

Bosonic auxiliary field to resolve 4-fermion interaction

L = ψ̄i (6∂ + i 6A + m+µγ0)ψi +
Nf

2g2
(Aν)

2

χSB (at µ = 0) below some Nf c
(Itoh et al. ’95; Del Debbio, Hands, Mehegan ’97; Christofi, Hands, Strouthos ’07)

◮ here Nf = 2 (=̂ N = 1 on the lattice)
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Lattice model

S =
∑

x ,y

N∑

i=1

χ̄i(x)Mx ,yχi(y) +
N

4g2

∑

x ,ν

A2
ν(x)

fermion matrix

Mx ,y = mδx ,y +
1

2

∑

ν

ην(x)
[

(1 + iAν(x)) eµδν,0δy ,x+ν̂−

− (1 − iAν(y)) e−µδν,0δy ,x−ν̂

]

(apbc in temporal direction)
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Complex Langevin simulation

Seff[A] =
N

4g2

∑

x ,ν

A2
ν(x) − ln det M[A]

Daniel Spielmann (ITP Heidelberg) 64 / 42



Complex Langevin simulation

Seff[A] =
N

4g2

∑

x ,ν

A2
ν(x) − ln det M[A]

det M ∈ C ⇒ complex Langevin equation – in continuous time:

∂

∂θ
Aν(x , θ) = − δSeff[A]

δAν(x , θ)
+ η(x , θ).

Complexify the auxiliary field,

Aν(x) → AR
ν (x) + iAI

ν(x).
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∂
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2g2
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Complex Langevin simulation

Seff[A] =
N

4g2

∑

x ,ν

A2
ν(x) − ln det M[A]

det M ∈ C ⇒ complex Langevin equation – discretized version:

AR
ν (x , n + 1) = AR

ν (x , n) − εRe
δSeff

δAν(x , n)
+

√
ε ην(x , n)

AI
ν(x , n + 1) = AI

ν(x , n) − ε Im
δSeff

δAν(x , n)

(θ = n · ε)
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Observables

chiral condensate

〈χ̄χ〉 =
1

V

〈
trM−1

〉

density

〈n〉 =
1

V

∂ lnZ

∂µ
=

1

V

〈

trM−1∂M

∂µ

〉

phase factor

e iφ =
det M(µ)

| det M(µ)| resp. e2iφ =
det M(µ)

det M(−µ)

◮ detM(µ) = [detM(−µ)]∗ after ‘complexification’ only on average
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No runaways observed

0 20 40 60 80 100
θ=n⋅ε

0

5

10

15

|Im
 A

|2

µ=0.2
µ=0.4

Im A remains bounded
during Langevin evolution
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‘Silver Blaze’ problem

0 0.2 0.4 0.6 0.8
µ

0

0.1

0.2

0.3

0.4

〈χχ〉 , 43

〈n〉, 43

Expectation values at µ > 0.
Increase lattice size . . .

 ‘Silver Blaze’ behavior
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‘Silver Blaze’ problem
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Evidence for ‘Silver Blaze’
behavior in thermodyn. limit
X

But: still need cp. with phase
quenched theory in order to
rule out ‘fake onset’
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Cp. with phase quenched theory (I)
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Cp. with phase quenched theory (II): near the onset
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no evidence that full & ph’q’
µc differ in thermodyn. limit

here, m = 0.2 (‘large’)
consider smaller masses . . .
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Cp. with phase quenched theory (II): near the onset
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Phase factor

Small
〈
e iφ

〉
(fluctuating around zero) may provide evidence for

severity of sign problem.

Some scatter plots . . .
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Phase factor
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Phase factor
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Thirring model

So far . . .

At high µ, config’s with different signs of det M sampled, but no
convergence problems observed

Complex Langevin may be well suited to handle the sign problem here

Now: compare with heavy dense limit (large m and µ)
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Thirring model: heavy dense limit
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Sign problem with complex stochastic quantization:

upshot for Thirring model

Complex Langevin evolution

Sometimes successful

Not in general reliable

◮ May not converge
◮ May converge against wrong solution

No general ‘a priori’ criterion for success known

Reasons for hope

Algorithm converges; no runaway trajectories

All phases of the fermionic determinant sampled at large µ

Observables differ between full and phase-quenched theory

Reason to be skeptical

Onsets in full & ph’q’ theories do not differ
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