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Confinement & IR propagators

Signatures of confinement

Confining quark-antiquark potential (gauge-invariant)

◮ demands an explanation

Infrared behavior of gluon & ghost propagator (gauge-dependent)

◮ here: Landau gauge, ∂µAµ = 0
◮ may provide an explanation

H Gribov-Zwanziger scenario
– related to confinement via topological defects
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IR propagators: continuum solutions

One-parameter family of solutions from FRG & DSE (figs. from Fischer et al. ’08)

Gluon propagator Dgl Ghost dressing function q2Dgh

Infrared exponents

lim
q2→0

Dgl/gh(q
2) ∝ 1

(q2)κA/C+1
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IR propagators: continuum solutions

One-parameter family of solutions from FRG & DSE (figs. from Fischer et al. ’08)

Gluon propagator Dgl Ghost dressing function q2Dgh

Infrared exponents (Lerche/von Smekal ’02, Zwanziger ’01, Pawlowski et al. ’03)

lim
q2→0

Dgl/gh(q
2) ∝ 1

(q2)κA/C+1
Scaling: κA = −2 κC

︸︷︷︸

=:κ

+
d − 4

2
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IR gluon & ghost propagator

Confinement ⇒ IR behavior

Common confinement scenarios (Gribov-Zwanziger, Kugo-Ojima)

predict infrared behavior

◮ G-Z/K-O−−−−−−−→
global BRST

scaling solution

Problem

Lattice: No scaling – only decoupling (d = 3, 4)

IR behavior ⇒ confinement

Scaling solution and decoupling solutions are confining (Braun et al. ’07)

At issue:

◮ Confinement mechanism
◮ Status of global BRST symmetry scaling: X decoupling: 5
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Gribov problem

Relevant regions in configuration space

Ω

Λ

∂µAµ = 0

G.f.  −∂D > 0:
1st Gribov region Ω

Still multiple gauge
copies (Gribov ’78, Singer ’78)

Gribov ambiguity

Unique copy:
Fundamental
modular region Λ

NP-hard
optimization problem
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Gauge fixing methods

Different methods employed here

1. Stochastic gauge fixing finite β

2. Standard gauge fixing here: β = 0

3. ‘max-B ’ gauge here: β = 0

g.f. per copy
std. non-std.

first copy 2. 1.

best copy 3.

here: ‘best’ =̂ IR max. ghost

◮ alt.: global max. of g.f. functional ( 10% effect on ghost)
(Bornyakov et al. ’08, Bogolubsky et al. ’08)

here: quenched SU(2)

Nc = 3 (Bogolubsky et al. ’07, Cucchieri et al. ’07, Oliveira et al. ’07, Sternbeck et al. ’07)

or dyn. fermions (Ilgenfritz et al. ’06)

)

not crucial
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Stochastic gauge fixing: Intuitive picture

Los Alamos/

standard gauge fixing

overrelaxation/...)

(e.g. heatbath + 

∂µAµ

Γ

(cp. Nakamura/Saito/Sakai ’04)
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Stochastic gauge fixing: Intuitive picture

Los Alamos/

standard gauge fixing

Langevin (interchange of

dynamics &

(e.g. heatbath + 

overrelaxation/...)

gauge tr.)

∂µAµ

Γ

(cp. Nakamura/Saito/Sakai ’04)

Langevin eq. incl. gauge

force (Zwanziger ’81)

more local than standard g. f.

⇒ possibly different sampling
of config’ space
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Propagators from stochastic gauge fixing

Bottom line

Confirmation of
standard lattice results . . .

2D: scaling, 3&4D: decoupling
e.g.

2D: Maas ’07

3D: Cucchieri/Mendes ’03

4D: Sternbeck et al. ’05, ’06,
Bogolubsky et al. ’07, ’08, ’09,
Cucchieri/Mendes ’07 . . .

. . . with alternative
gauge fixing method
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Propagators from stochastic gauge fixing
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Gluon propagator

2D: compatible with IR
scaling

κ ≈ 0.2, as expected

But: β = 0 results raise new questions
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Propagators from stochastic gauge fixing
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Gluon propagator

3D: Peak, but IR finite
 decoupling

But: at β = 0, 3D similar to 2D
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Propagators from stochastic gauge fixing

0.1 1
q [GeV]

1

q
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h

200
2

Ghost dressing function

2D: IR divergent
κ ≡ κC ≈ 0.2

as expected for scaling

consistent with gluon
data

But: different picture at β = 0
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Propagators from stochastic gauge fixing
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Upshot of stochastic gauge fixing

gluon ghost scaling

d = 2

d = 3

d = 4
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Upshot of stochastic gauge fixing

Confirmation of standard lattice scenario

⇒ Lattice gauge fixing problem more general?
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Strong-coupling limit

Motivation

β → 0 =̂ a → ∞

IR behavior visible at large aq

4D: Evidence for conformal behavior (Sternbeck/von Smekal ’08)

Recent new data also in d = 2 & 3
Interpretation under debate (Cucchieri/Mendes ’09, Maas et al. ’09)

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 9 / 18



Running coupling
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cp. with continuum predictions for αc

(Lerche/von Smekal ’02)

peak at

85%
9
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;
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eff. running coupling

αe =
g2

4π
qd+2DglD
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strong-coupling limit

standard gauge fixing
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Running coupling
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Upshot of standard gauge fixing at β = 0

d = 2, 3 and 4

no uniform scaling at all aq

possible scaling window

◮ moves towards larger aq from d = 2 to d = 4
◮ same pattern at finite β

previous result: discretization effects at small aq (Sternbeck/von Smekal ’08)

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 11 / 18



Upshot of standard gauge fixing at β = 0

d = 2, 3 and 4

no uniform scaling at all aq

possible scaling window

◮ moves towards larger aq from d = 2 to d = 4
◮ same pattern at finite β

previous result: discretization effects at small aq (Sternbeck/von Smekal ’08)

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 11 / 18



Room for speculation . . .

gluon prop., finite β running coupling, β = 0

d = 2
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Impact of Gribov ambiguity

Basic idea of ‘Landau max-B ’ gauge (Maas ’09)

Functional methods  one-parameter family of solutions
(Fischer et al. ’08, Boucaud et al. ’08)

Analogous lattice procedure

◮ Exploit residual gauge freedom in Landau gauge
◮ For each config’

H choose among ncopy Gribov copies
the one with

Dgh(qmin)

Dgh(Q)
=: B = max

Here: first simulations at β = 0, in d = 2, 3
finite β: Maas ’09 & work in progress
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Impact of Gribov ambiguity
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 strong effect
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Impact of Gribov ambiguity
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Impact of Gribov ambiguity on running coupling

αe ∝ D2
ghDgl

Large impact on ghost

Small impact on gluon

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 0.5 1 1.5 2 2.5 3
aq

0

0.5

1

1.5

α
e

α
c
(κ=0.2)

288
2
, n

copy
=1

d = 2

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 0.5 1 1.5 2 2.5 3
aq

0

0.5

1

1.5

α
e

48
2
, n

copy
=10

α
c
(κ=0.2)

288
2
, n

copy
=1

d = 2

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 0.5 1 1.5 2 2.5 3
aq

0

0.5

1

1.5

α
e

48
2
, n

copy
=200

n
copy

=10

α
c
(κ=0.2)

288
2
, n

copy
=1

d = 2

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 0.5 1 1.5 2 2.5 3
aq

0

0.5

1

1.5

α
e

48
2
, n

copy
=590

n
copy

=200

n
copy

=10

α
c
(κ=0.2)

288
2
, n

copy
=1

d = 2

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 1 2 3
aq

0

0.5

1

1.5

2

2.5

3

α
e

α
c
(κ=0.3976)

α
c
(κ=0.35)

64
3
, n

copy
=1

d = 3

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 1 2 3
aq

0

0.5

1

1.5

2

2.5

3

α
e

α
c
(κ=0.3976)

α
c
(κ=0.35)

48
2
, n

copy
=10

64
3
, n

copy
=1

d = 3

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 1 2 3
aq

0

0.5

1

1.5

2

2.5

3

α
e

α
c
(κ=0.3976)

α
c
(κ=0.35)

48
2
, n

copy
=70

n
copy

=10

64
3
, n

copy
=1

d = 3

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 1 2 3
aq

0

0.5

1

1.5

2

2.5

3

α
e

α
c
(κ=0.3976)

α
c
(κ=0.35)

48
2
, n

copy
=140

n
copy

=70

n
copy

=10

64
3
, n

copy
=1 d = 3

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 1 2 3
aq

0

0.5

1

1.5

2

2.5

3

α
e

α
c
(κ=0.3976)

α
c
(κ=0.35)

48
2
, n

copy
=300

n
copy

=140

n
copy

=70

n
copy

=10

64
3
, n

copy
=1

d = 3

Large Gribov copy effect
on running coupling

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity on running coupling

0 1 2 3
aq

0

0.5

1

1.5

2

2.5

3

α
e

α
c
(κ=0.3976)

α
c
(κ=0.35)

n
copy

=590

n
copy

=300

n
copy

=140

n
copy

=70

n
copy

=10

64
3
, n

copy
=1

d = 3

Large Gribov copy effect
on running coupling
⇒ even ‘over-scaling’

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 15 / 18



Impact of Gribov ambiguity

Interpretation

Gribov ambiguity more severe than expected

◮ Should also hold at finite β

No subset of IR solutions (scaling & decoupling) excluded by our data

◮ Stronger & diff. Gribov copy effect than by ‘global maximization’
(e.g. Bogolubsky et al. ’05, ’07, ’09, Bornyakov et al. ’08, ’09)

H O (100%) vs. 10% for ghost
gluon: small effect vs. 20%

H ‘over-scaling’ vs. decoupling
but: ‘over-scaling’ ruled out in continuum
(uniqueness proof: Fischer et al. ’06, ’09, Huber et al. ’07)
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Summary

Stochastic gauge fixing

Standard lattice scenario supported by alternative gauge fixing method

Strong-coupling limit

Evidence against scaling (in agreement with std. lattice scenario)

– but also in d = 2 (surprising)

Max-B gauge in strong-coupling limit

Unexpectedly strong effect of Gribov ambiguity

◮ Surprising ‘over-scaling’ in finite volumes

◮ No subset of solutions can be excluded yet
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Outlook

Current results surprise and raise new questions

◮ V → ∞ and ncopy → ∞ limit of max-B gauge
◮ Max-B gauge at finite β (Maas ’09 & work in progress)

BRST invariant lattice formulation . . . (von Smekal et al. ’07, ’08 . . . )
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Langevin dynamics (stochastic quantization: Parisi/Wu ’81, Batrouni et al. ’85, Damgaard/Hüffel ’87)

Langevin equation in fictitious time θ

dA =(−∇S + η)dθ

η = Gaussian random noise

−−−−−−→
equilibrium

ρ[A] ∝ e−S[A]
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Langevin dynamics with gauge fixing (continuum)

Supplement Langevin equation by gauge force (Zwanziger ’81)

dA =(−∇S + Dv + η)dθ

η = Gaussian random noise v ≡ ∂µAµ

−−−−−−→
equilibrium

ρ[A] ∝ e−S[A] & ∂µAµ = 0

gauge orbit

gauge fixing force
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Langevin dynamics with gauge fixing (continuum)

Supplement Langevin equation by gauge force (Zwanziger ’81)

dA =(−∇S + Dv + η)dθ

η = Gaussian random noise v ≡ ∂µAµ

−−−−−−→
equilibrium

ρ[A] ∝ e−S[A] & ∂µAµ = 0

Inside Ω: restoring towards gauge fixing surface
outside Ω: repulsive directions

Ω∂Ω ∂Ω
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Faddeev-Popov operator spectrum
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Faddeev-Popov operator spectrum
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Faddeev-Popov operator spectrum
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Faddeev-Popov operator spectrum
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Faddeev-Popov operator spectrum
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Faddeev-Popov operator spectrum

Upshot

Peak disappears for
sufficiently small ∆2

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 20 / 18



Running coupling & local exponents
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Running coupling & local exponents
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Running coupling & local exponents
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Importance of IR asymptotics

What κ may tell about confinement

IR asymptotics of Dgl(q
2), Dgh(q

2)
 Test predictions of confinement scenarios

E.g.: Violation of reflection positivity by IR non-divergent gluon
propagator (lattice: Bowman et al. ’07 (4D), Cucchieri et al. ’05 (3D))
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How to sample the configuration space

Possible requirements on the algorithm

Find either of the following:
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Fundamental modular region Λ (free of Gribov copies)
=̂ NP-hard optimization problem

Entire Gribov region Ω with Faddeev-Popov weight

◮ (Conjecture: Ω & Λ equiv. for expectation values (Zwanziger ’04))
◮ Restriction to Ω automatically (by g.f.)

precise distribution nontrivial

Bias towards Gribov horizon ∂Ω (Gribov-Zwanziger sc.: config’s near
∂Ω ∩ ∂Λ account for confinement)

Daniel Spielmann (ITP Heidelberg) Confinement & IR propagators DPG 2010 23 / 18



How to sample the configuration space

Possible requirements on the algorithm

Find either of the following:

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

Fundamental modular region Λ (free of Gribov copies)
=̂ NP-hard optimization problem

Entire Gribov region Ω with Faddeev-Popov weight

◮ (Conjecture: Ω & Λ equiv. for expectation values (Zwanziger ’04))
◮ Restriction to Ω automatically (by g.f.)

H Faddeev-Popov operator is Hessian of
R

d4x |ωA|2, which is minimized
by numerical Landau g. f.;

precise distribution nontrivial

Bias towards Gribov horizon ∂Ω (Gribov-Zwanziger sc.: config’s near
∂Ω ∩ ∂Λ account for confinement)
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◮ Restriction to Ω automatically (by g.f.);
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Confinement scenarios

Gribov-Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .
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Confinement scenarios

Gribov-Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .

◮ In Landau gauge:
IR vanishing of gluon propagator (horizon condition).
(‘IR slavery’ scenario of quark confinement, D ∼ 1/q4, obsolete.)
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Confinement scenarios

Gribov-Zwanziger scenario (Gribov ’78, Zwanziger ’94, ’04)

Basic idea: Configurations in
vicinity of ∂Ω(∩∂Λ) account for
confinement of gluons.

◮ Entropy favors ∂Ω (due to rN−1dr).
◮ (Situation less clear due to e−S)

Implications depend on gauge. . .

◮ In Landau gauge:
IR vanishing of gluon propagator (horizon condition).
Ghost dressing function divergent in the IR.
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Confinement scenarios

Kugo-Ojima scenario (Kugo/Ojima ’79, review: Nakanishi/Ojima ’90)

Confinement by BRST quartet mechanism

◮ ≈̂ Gupta-Bleuler in QED, but applies also to transversal gluons

Integral part of Kugo-Ojima criterion:
Well-defined global color charge
⇐⇒

1 mass gap &

2 (in Landau gauge) IR enhanced ghost propagator
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Confinement scenarios and Green’s functions

Implications in a nutshell

Kugo-Ojima

◮ (BRST quartet mechanism, ≈̂ Gupta-Bleuler in QED)

κ > 0

Gribov-Zwanziger (stronger implications)

◮ (confinement by config’s close to 1st Gribov horizon)

κ > 0 for ghost, κ > 1/2 for gluon (i.e. κA < −1 )

I.e.:

◮ Ghost dressing function IR divergent
◮ Gluon propagator IR vanishing
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Implementing stochastic gauge fixing on the lattice

Dynamics

Lattice Langevin eq. with step size ε (e.g. Batrouni et al. ’85)

exp
“

. . . A
a
µ(x)

”

=Uµ(x) → exp(iσaF a
µx)Uµ(x)

with force F a
µx = iε∇xµaS [U]

︸ ︷︷ ︸

drift

+
√

εηxµa
︸ ︷︷ ︸

diffusion

‘〈ηα〉 = 0, 〈ηαηβ〉 = 2δαβ ’

Gauge fixing

. . . via Zwanziger’s drift term (lattice version: Rossi et al. ’88)

Ω(x) = exp

(

. . . · σa ∆a

α

)
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Implementing stochastic gauge fixing on the lattice

Dynamics

Lattice Langevin eq. with step size ε (e.g. Batrouni et al. ’85)

exp
“

. . . A
a
µ(x)

”

=Uµ(x) → exp(iσaF a
µx)Uµ(x)

with force F a
µx = iε∇xµaS [U] +

√
εηxµa ‘〈ηα〉 = 0, 〈ηαηβ〉 = 2δαβ ’

Gauge fixing

. . . via Zwanziger’s drift term (lattice version: Rossi et al. ’88)

Ω(x) = exp

(

. . . · σa ∆a

α

)

general lattice g.t.: Uµ(x)→ Ω(x)Uµ(x)Ω
†
(x + µ̂)
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Implementing stochastic gauge fixing on the lattice

Dynamics

Lattice Langevin eq. with step size ε (e.g. Batrouni et al. ’85)

exp
“

. . . A
a
µ(x)

”

=Uµ(x) → exp(iσaF a
µx)Uµ(x)

with force F a
µx = iε∇xµaS [U] +

√
εηxµa ‘〈ηα〉 = 0, 〈ηαηβ〉 = 2δαβ ’

Gauge fixing

. . . via Zwanziger’s drift term (lattice version: Rossi et al. ’88)

Ω(x) = exp

(

. . . · σa ∆a

α

)

∆a=̂∂µAa
µ, α: gauge parameter
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Implementing stochastic gauge fixing

Random walk

For dynamics: Alternatively to Langevin:
Random walk with step size η ∈ O(

√
ε)

Uµ(x) → exp(iσaAa
µ)Uµ(x)

with contributions ±η (fixed size) to Aa
µ(x),

accepted with probability

p =
1

2

(

1 ± tanh

(
1

2
ηi∇xµaS [U]

))
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Implementing stochastic gauge fixing

Langevin vs. random walk: No important difference

‘Local’ interchange of dynamic updates and gauge transf’s
⇒ config’s closer to g. f. surface

0 200 400 600 800 1000

# iter / 10

0

0.005

0.01

∆
2

separate gauge transformation ∂µAµ

Γ
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Langevin vs. random walk: No important difference

‘Local’ interchange of dynamic updates and gauge transf’s
⇒ config’s closer to g. f. surface

0 200 400 600 800 1000

# iter / 10

0

0.005

0.01

∆
2

separate gauge transformation

gauge transformation after each single link update
∂µAµ

Γ
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