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Introduction

General remarks:
* There is confinement in SU(3) gauge theory.

* General aim: Identify the degrees of freedom (C SU(3))
that account for confinement.

* Aim of this work: Identify the d.o.f. that are responsible for
confinement in Sp(2) gauge theory
(neglecting fermions for simplicity).

* Method of this work: Lattice gauge theory.

° Crucial ingredient: Gauge fixing before performing
projections to subgroups.
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© Symplectic groups constitute one of four types of
classical Lie groups.

° Characterization of U € Sp(N, C) in 2N-dim. rep.:
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* Def. of Sp(N):

© Symplectic groups constitute one of four types of
classical Lie groups.

° Characterization of U € Sp(N, C) in 2N-dim. rep.:

A e
—1Iyxn 0

= U* = JUJ!
Sp(N) = Sp(N,C)NU(2N)
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Introduction

Topic of this work:

* Gluonic sector of Sp(2) lattice gauge theory
(quenched approximation)

* Def. of Sp(N):
© Symplectic groups constitute one of four types of
classical Lie groups.
o Alternative def.: Sp(IN) as group of transformations
which preserve the inner product

(w,v) = dv1 + ... +anoy  (u,v € HY)
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Introduction

Topic of this work:

* Remark: Two fundamental rep’s of Sp(2)
° 4D, pseudoreal (used here)
° 5D, real (Sp(2) ~ SO(5))
* Why is the symplectic gauge group Sp(2) interesting?
> Sp(1) =SU(2)
Z(SU(N)) =Zn
Z(Sp(N)) = Zs
°© = Sp(N) with increasing N:
Gauge group grows (2N? + N generators),
center stays constant.
° Moreover: m(Sp(N)/Zs) = Zs.
© = Possible test of the center vortex mechanism of

confinement
|
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Introduction

Parametrization of the 4D fund. rep. of Sp(2):
* Our choice:

—sin @ hohy cos6 hs

0h in 0 hah
Sp(2)992< COS 1 S1T1 2 3)

hi € {h € H* : |h]| = 1} ~ SU(2)
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Introduction

Parametrization of the 4D fund. rep. of Sp(2):
* QOur choice:

—sin @ hohy cos6 hs

0h in 0 hah
Sp(2)99:< COS 1 S1T1 2 3)

hi € {h € H* : |h]| = 1} ~ SU(2)
* Alternatively:
g = WA where W, X e ¢?%°
—X* W~
and (WWT + XXT=1) A (WXT = XWw7T)
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Static quark potential
* V(R) = —lim;_ £ InW(R,T)
V=0a?R—a/R+c
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Confinement in Sp(2)

Static quark potential
* V(R) = —lim;_ £ InW(R,T)
V = O'CL2R—04/R+C
* Algorithm: Cabibbo-Marinari

+ microcanonical reflections

+ random GT
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Confinement in Sp(2)

Static quark potential
* V(R) = —lim;_ £ InW(R,T)
V = 0a2R—a/R+c
* Algorithm: Cabibbo-Marinari

+ microcanonical reflections

+ random GT

: Smearing f
(Ui = 11, exp(9aCa)Us, J——
F, € O(e) s.t. (U — 1, 2

adjust € ~» acc. rate =~ 0.5)

A

...renders —In W (T) linear
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Confinement in Sp(2)
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Confinement in Sp(2)

Static quark potential

* Agreement with previous results obtained from

(@) = exp(N-V (T — 7))

(HoLLAND, PEPE, WIESE NPB (PS) 129 ('04))
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Finite temperature

Implementation:
* T =(N:a(B))"
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Finite temperature

Implementation:
* T =(N;a(8))™
Polyakov loop:

* Worldline of a static quark propagating in periodic time
direction

* Polyakov loop on the lattice:

N,.—1 1
P@@) = ] Uo(@t), @) = ~tr P(2)
t=0

* Order parameter in finite volumes:

Z ®(7)

1
(I):ﬁ
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Implementation:
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Polyakov loop:

* Worldline of a static quark propagating in periodic time
direction

* Polyakov loop on the lattice:
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Finite temperature

Finite V: Tunneling

between ¢ > 0 and ¢ < 0
= always (®) = 0

11111111111111
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Finite temperature

Finite V: Tunneling w m
between ¢ > 0 and ¢ < 0 . M
= always (®) =0

0000000000000000000000000000
Zahl der Iterationen

V — o0o:

* Tunneling suppressed

° = = £ >~ ®(¥) serves as order parameter for
confinement:

(®) # 0 < center symmetry spontaneously broken

cp. (®)] ~ exp (—FoN- )
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Finite temperature

Important quantities:
* Susceptibility x = (®2) — (®)°
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Finite temperature

Important quantities:
* Susceptibility x = (®2) — (®)°

* Binder cumulant: gr = %

o 2" order PT = g% = —2

— 3

o 4% cumulant of ® (i.e. order parameter in infinite
volume)
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Finite temperature

Phase transition: Results (N, = 2)
* 15 order PT at 8 = 6.443(2)
(HoLLAND, PEPE, WIESE NPB (PS)

129 ('04): 8 = 6.4643(2))
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Finite temperature
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Finite temperature
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Finite temperature

' I
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Finite temperature

Phase transition: Results (N, = 2)

* 15 order PT at 8 = 6.443(2)
(HoLLAND, PEPE, WIESE NPB (PS)
129 ('04): B. = 6.4643(2))
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Finite temperature

Phase transition: Results (N, = 2)

* 15t order PT at 8 = 6.443(2)
(HoLLAND, PEPE, WIESE NPB (PS)
129 ('04): B, = 6.4643(2)) |
* Confirmed by y and g data:
= T :E//(I/ 0% 210° Messun } | r{.‘é T \x\\ I\ |
I - 12, 200° . 19 e I
6.238 ‘ 5.24 ‘ 6.%342 ‘ 6.244 ‘ 6.;46 2 6_235 ' 6,24 |; e‘i45 ' 5,25

Confinement in Sp(2) lattice gauge theory — p.12/35



Finite temperature

0.015

0.01

0.005

:E/ _ .q3 5
107x2, 210" Messungen N

- 12°%2. 2110° i
----- 14%¢2, 10°

:t'/'

| . | | . | . |

6.438 6.44 6.442 6.444 6.446
B
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Finite temperature

— 6x2, 10°
------- 8°x2. 10°2110°
- 12°%2. 2110°

I
-2
6.435
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Finite temperature

Polyakov loop holonomy near the phase transition
* GT of alink variable: U,,(z) — Q(z)U,(z)Q (z + f1)
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Finite temperature

Polyakov loop holonomy near the phase transition
° GTs P(Z) — Q(Z,0)P(2)Q1(Z,0)
are conjugations (valid for any closed contour)

°* = Local GT of P(Z) into Cartan subgroup always possible
(BLAU, THOMPSON COMMUN. MATH. PHYs. 171 (’95))

(H > g = diag (exp(iag), exp(—ias), exp(iag), exp(—iag)))
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Finite temperature

Polyakov loop holonomy near the phase transition

° GTs P(&) — Q(z,0)P(2)Q'(&,0)
are conjugations (valid for any closed contour)

°* = Local GT of P(Z) into Cartan subgroup always possible
(BLAU, THOMPSON COMMUN. MATH. PHYs. 171 (’95))

(H > g = diag (exp(iag), exp(—ias), exp(iag), exp(—iag)))

* In case of Sp(2):
Reflections at roots
(here: Weyl group W)
are GTs
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Finite temperature
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Finite temperature

Polyakov loop holonomy near the phase transition

* = GT maps P to a definite
Weyl chamber H /W
Constraint to bijective region
yields fundamental domain
F=H/WnM.
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Finite temperature

Polyakov loop holonomy near the phase transition

* = GT maps P to a definite
Weyl chamber H /W
Constraint to bijective region
yields fundamental domain
F=H/WnM.
~» Gauge-invariant info’

Results:

£ = 6.438
(slightly below PT)
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Results:
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Subgroups at 17" ~ 0: Method

General remarks:

* Partial gauge fixing necessary before projecting to

subgroup
(FABER, GREENSITE, OLEJNiK JHEP 9901 for center and Abelian proj. of

SU(2))
Algorithms:
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Subgroups at 17" ~ 0: Method

General remarks:

* Partial gauge fixing necessary before projecting to

subgroup
(FABER, GREENSITE, OLEJNiK JHEP 9901 for center and Abelian proj. of

SU(2))
Algorithms:
° Steepest ascent
° Simulated annealing (KIRKPATRICK ET AL. SCIENCE 220 ('83),
CERNY '85)

* Projection (more precisely: link projection)
* Calculate 0a?(3) of projected and ‘reduced’ config’s
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Subgroups at 17" ~ 0: Method

Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9
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Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9

°* U(1) x U(1): diag (exp(iag), exp(—ias),exp(iag), exp(—iag))
Maximal Abelian Subgroup
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Subgroups at 17" ~ 0: Method

Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9

°* U(1) x U(1): diag (exp(iag), exp(—ias),exp(iag), exp(—iag))
Maximal Abelian Subgroup

* U1
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Subgroups at 17" ~ 0: Method

Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9

°* U(1) x U(1): diag (exp(iag), exp(—ias),exp(iag), exp(—iag))
Maximal Abelian Subgroup

¢ U(1)
o Z(Sp(2)) = Z
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Subgroups at 17" ~ 0: Method

Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9

°* U(1) x U(1): diag (exp(iag), exp(—ias),exp(iag), exp(—iag))
Maximal Abelian Subgroup

* UQ)
* Z(Sp(2)) =2
° Direct center gauge
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Subgroups at 17" ~ 0: Method

Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9

°* U(1) x U(1): diag (exp(iag), exp(—ias),exp(iag), exp(—iag))
Maximal Abelian Subgroup

* UQ)

* Z(Sp(2)) = Zs
° Direct center gauge
° Indirect CG via SU (2)
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Subgroups at 17" ~ 0: Method

Candidate subgroups:

* Diagonal SU(2): (‘g O),g e SU(2)
9

°* U(1) x U(1): diag (exp(iag), exp(—ias),exp(iag), exp(—iag))
Maximal Abelian Subgroup

* UQ)
* Z(Sp(2)) =2
° Direct center gauge

° Indirect CG via SU (2)
° Indirect CGviaU(1) x U(1)
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Subgroups at 17" ~ 0: Method

‘Ideal gauge fixing’ (LanGreLD PRD 69 ('04))

° Aim: Minimize distance of subgroup elements V,,(z) from
gauge-transformed full gauge field Uf}(x)

S U2 (@) = Vi@)|)? =2 min
T, 4
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Subgroups at 17" ~ 0: Method

‘Ideal gauge fixing’ (LanGreLD PRD 69 ('04))

° Aim: Minimize distance of subgroup elements V,,(z) from

gauge-transformed full gauge field U,f}(:c)

S U2 (@) = Vi@)|)? =2 min
T, 4

<= Maximize the quantity

R = 4]\11;4 ;u: Re tr (U/?(CB)VJ(ZC)) € [0,1]

by adjusting {V,,(z)} and {€2(z)} simultaneously
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Subgroups at 17" ~ 0: Method

‘Ideal gauge fixing’

* Algorithm finds mere local maxima of R
= Gribov problem on the lattice
° Gribov region: local maxima of the gff

© Fundamental modular region: global maxima

|
Confinement in Sp(2) lattice gauge theory — p.18/35



Subgroups at 17" ~ 0: Method

‘Ideal gauge fixing’
* Algorithm finds mere local maxima of R
= Gribov problem on the lattice
° Gribov region: local maxima of the gff
© Fundamental modular region: global maxima

e Decomposition: U = UVIV =UV
(# (W) = (W)(Wy))
° Projected config's: {V,(z)}

o Reduced (removed) config’s: {U,ﬂl(a:)vj (:c)}

Hope: o, = 0
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Steepest ascent.
© (Caveat: G.f. more sensitive than Smearing.)

|
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Steepest ascent.
© (Caveat: G.f. more sensitive than Smearing.)
Method:
° Optimal choice of V,(z)
° Choice of Q(x) s.t. R increases
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Steepest ascent.
© (Caveat: G.f. more sensitive than Smearing.)
Method:
° Optimal choice of V,(z)
° Choice of Q(x) s.t. R increases
°© Qz) = exp (D, 0°C?) Q(z)
© Local change of gff:
= Retr (QMZ +19%Retr (C*QM)

VO
f

where M = 7 U, (2)Qf (2 + 2) V) (z)

|
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Steepest ascent.
© (Caveat: G.f. more sensitive than Smearing.)
Method:

O

@)

@)

O

Optimal choice of V,,(x)

Choice of Q)(z) s.t. R increases
Q(x) — exp (D>, V°C?) Q(x)
Local change of gff:

7 R Retr (QMZ +19%Retr (C*QM)

N

~

VU = gqtRetr (C*QM)
= A7 > 0 (1% order)
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Steepest ascent.

© (Caveat: G.f. more sensitive than Smearing.)
Method:

° Optimal choice of V,(z)
° Choice of Q(z) s.t. R increases
Comments:

o Sufficient for Sp(2) — SU(2)
(10 — 3 continuous d.o.f.).

° |n case of smaller subgroups: Algorithm gets caught in
mere local maxima too easily.
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
* Simulated annealing.
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Simulated annealing.
Method:

°© Random V,(z) (e.g. € {£1}) accepted with

p = min <1,exp (%?AR))

= Allows downhill steps (~~ leaving local maxima)
Slow increase of 3r = cooling
(Bp — oo = steepest ascent)

° Update of 2(z) as before

|
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
* Simulated annealing.
Method:
°© Random V,(z) (e.g. € {£1}) accepted with

p = min <1,exp (%AR))

= Allows downhill steps (~~ leaving local maxima)
Slow increase of 3r = cooling
(Bp — oo = steepest ascent)

° Update of 2(z) as before
Comments:
© Much more time-consuming than steepest ascent

© Suitable method for center projection
|

|
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
* Simulated annealing
Comparison with other (experimental) algorithms:
© Raising & lowering Sr several times
° Lowering Gr when approaching a local maximum

—— multikanonisch
Ségezahn
—— simulated annealing

‘ Il ‘ Il
5000 10000 15000
Zahl der Iterationen

|
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
* Simulated annealing
Comparison with other (experimental) algorithms:
© Raising & lowering Sr several times
° Lowering Br when approaching a local maximum

I T T T I T T j I
TSV o0 — multikanonisch
Ségezahn

— simulated annealing

| 0.8 T T ] 1

—— multikanonisch

Ségezahn

— simulated annealing x

— 0.78 | _
| ! | ! | L L |
5000 10000 15000 0 2000 4000 6000
Zahl der Iterationen Zahl der Iterationen
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Abelian projection (to U (1) and U(1) x U(1)):
Small, but continuous subgroups. MC for V' less obvious.
Steepest ascent also unsatisfactory. — Method:

° Optimal choice of V,(z).
° Simulated annealing for Q(x).

° p=exp (%FAS)  increase (g
* Adjust g4 S. t. acc. rate for new Q(x) ~ 50%

|
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Subgroups at 17" ~ 0: Method

Implementation of ‘ideal gauge fixing’ condition:

* Abelian projection (to U (1) and U(1) x U(1)):
Small, but continuous subgroups. MC for V' less obvious.
Steepest ascent also unsatisfactory. — Method:

° Optimal choice of V,(z).
° Simulated annealing for Q(x).

0.9

04 ‘ \ ‘ \ ‘ \
0 1000 2000 3000

Zahl der Iterationen
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Subgroups at 17" ~ 0: Method

0.9 T | |

--- steepest ascent
— simulated annealing

! I ! I
1000 2000 3000
Zahl der Iterationen
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|
Subgroups at 1" =~ 0: Results
Results for SU(2)
* Sufficient for confinement: oy ~ o
* Necessary for confinement: o, ~ 0
3F ' ' | — L ' =
L Y % ///”/QH /-/.— Fit, volle Sp(2)
o e M Py
21— 2 z::z 7.2, 12:,2
LRt Son
Un S - — —|+|-H+—ig 7—6 1—6 :—1 .
_ L | L | L | L | L _
0 1 2 3 4 5
RO_112
|
|
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Subgroups at 1" =~ 0: Results

Results for SU(2)
* Sufficient for confinement: opoj ~ o

* Necessary for confinement: o, ~ 0

&0 10* é
1.2+ o---012* -

0.8

Il Il Il Il
7.1 7.2 7.3 7.4 7.5 7.6
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Subgroups at 1" =~ 0: Results

Results for SU(2)

* Evidence for nontriviality of ‘SU(2) dominance’:
© oproj/0 iNCreases as a — 0
° Coulomb coefficient drops by 75% after partial g.f. and
projection

(remember: V =ocR — % + ¢)

° (Phase transition after projection at same temperature)

|
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Subgroups at 1" =~ 0: Results

Results for SU(2)

* Evidence for nontriviality of ‘SU(2) dominance’:
© oproj/0 iNCreases as a — 0

© Coulomb coefficient drops by 75% after partial g.f. and
projection
° (Phase transition after projection at same temperature)
* Problems:
°© SU(2) is too large a subgroup to be really interesting
° No direct identification of topological objects

|
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Subgroups at 1" =~ 0: Results

Previous results on Abelian dominance:
* Abelian projection proposed by Mandelstam & 't Hooft

* Connected to dual Meissner effect as hypothetical
mechanism of confinement

|
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Subgroups at 1" =~ 0: Results

Previous results on Abelian dominance:
* Abelian projection proposed by Mandelstam & 't Hooft

* Connected to dual Meissner effect as hypothetical
mechanism of confinement

* Numerical corroboration of Abelian dominance in SU (2):
Oproj > 0.90 (Hioki ET AL. PLB 272 ('91); ILGENFRITZ ET AL. PRD 61 ('00))

® SU(3): oproj = 0.80 (STack, TUCKER, WENSLEY NPB 639 ('02))
° Caveat: opro; drops when g.f. is improved

|
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Subgroups at 1" =~ 0: Results

Results for Abelian subgroups:

|
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Subgroups at 1" =~ 0: Results

Results for Abelian subgroups:
°* o ~0

® oproj/o = 0.6 (U(1))

3 T I
—— Fit, volle Sp(2) A
O--© UQ1)-Proj., 7.1, 1
GO--1173,2
H-- 15,2 . //H
2 |O-O UQ)entfernt, 7.1, 1 L -7 —
. -4
=z |
21+ _
(0 o B < . =] ]
|
0 3
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Subgroups at 1" =~ 0: Results

Results for Abelian subgroups:
°* o ~0

® oproj/0 ~ 0.6 (U(1)) resp. 0.84 (U(1) x U(1))

Fit, volle Sp(2) ' ' T
= « == Fit, U(1)OU(1)-Projektion
O ..........
o P
<> .......... /
YN
2 G ]
S
= = = Fit, U()OU(1) entfernt | 3
.':;:: :::
S n
o . R =ttt — = A — A — = — —
| | |
0 1 2 3
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Subgroups at 1" =~ 0: Results

Previous results on center dominance:

o SU(Q) MCG: Oproj ~ O (e.g. DEL DEBBIO ET AL. PRD 55 ('97))
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Subgroups at 1" =~ 0: Results

Previous results on center dominance:

o SU(Q) MCG: Oproj ~ O (e.g. DEL DEBBIO ET AL. PRD 55 ('97))

* SU(3):
© 100% in LCG (pe ForcraNnD, PEPE NPB 598 ('01))
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Subgroups at 1" =~ 0: Results

Previous results on center dominance:
° SU(2) MCG: oprj = 0 (e.g. DEL DEBBIO ET AL. PRD 55 ('97))
* SU(3):
© 100% in LCG (pE ForcraNnD, PEPE NPB 598 ('01))

> 80% in IMCG via U(1) x U(1)
(STACK, TUCKER, WENSLEY NPB 639 ('02))
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Subgroups at 1" =~ 0: Results

Previous results on center dominance:

© SU(Q) MCG: Oproj ~ O (e.g. DEL DEBBIO ET AL. PRD 55 ('97))

* SU(3):
© 100% in LCG (pE ForcraNnD, PEPE NPB 598 ('01))

> 80% in IMCG via U(1) x U(1)
(STACK, TUCKER, WENSLEY NPB 639 ('02))

° 62% in MCG, 58% in ICG
(LANGFELD PRD 69 ('04), KUSTERER '04)
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Subgroups at 1" =~ 0: Results

Center dominance in Sp(2) not to the same extent
asin SU(2) and SU(3)!

|
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Subgroups at 1" =~ 0: Results

Center dominance in Sp(2) not to the same extent
asin SU(2) and SU(3)!

* Direct ideal center gauge: oy ~ 0.30
© Caution: adequate g.f. proves difficult
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Subgroups at 1" =~ 0: Results

Center dominance in Sp(2) not to the same extent
asin SU(2) and SU(3)!

* Direct ideal center gauge: oy ~ 0.30
© Caution: adequate g.f. proves difficult

* Indirect ICG via SU(2): oproj =~ 0.430
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Subgroups at 1" =~ 0: Results

Center dominance in Sp(2) not to the same extent
asin SU(2) and SU(3)!

* Direct ideal center gauge: oy ~ 0.30
© Caution: adequate g.f. proves difficult
* Indirect ICG via SU(2): oproj =~ 0.430

3

°* [ICGviaU(1) x U(1):
Uproj ~ 0490-

21

|
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Subgroups at 1" =~ 0: Results

Center dominance in Sp(2) not to the same extent

asin SU(2) and SU(3)!

3 ' I '
Fit, volle Sp(2)
= == . Fit, Zentrumsproj. nach abelscher Proj., 7.2-7.5
L &----© 7., 2, indirekte Zentrumsproj.
F----E 7.2, 1, proj.
& —-———¢ 7.3, 1, proj.
| A———-A 74,1, proj.
2 <$---— 7.5, 1, proj.
Qe O 7.1, 2, Zentrum entfernt
[ 0 72,2, Ze.
RO & 7.3,4,Z.e.
N Y/ A 7.4,4,Z ¢
S G < 75,4,Z e.
L+
o~ ¥ A xR
0 1
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Subgroups at 1" =~ 0: Results

Topological objects that may account for confinement:

* Abelian monopoles (dual superconductor picture of
Confinement) (NAMBU, MANDELSTAM, 'T HOOFT)

® Center vortices ('t HooFT, NIELSEN, AMBJZRN, OLESEN)

Previous results:

|
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Subgroups at 1" =~ 0: Results

Topological objects that may account for confinement:

* Abelian monopoles (dual superconductor picture of
Confinement) (NAMBU, MANDELSTAM, 'T HOOFT)

® Center vortices ('t HooFT, NIELSEN, AMBJZRN, OLESEN)

Previous results:
Monopoles:
= SU(Q) MAG: <WU(1)> ~ <Wmon> <th>
= Vu)(r) & Vinon(7) + Vpn(7)
(SHIBA, Suzuki PLB 333 ('94); STACK, NEIMAN, WENSLEY PRD 50 ('94))

* Monopole potential reproduces full o (BaLi et AL. PRD 54 ('96))

* SU(2) MAG: p/c3/? = 0.65
(BORNYAKOV, MULLER-PREUSSKER NPB (PS) 106 ('02))

* Finite continuum limit of p in SU(2) LAG doubtful (Bornvakov,

ILGENFRITZ, MULLER-PREUSSKER PRD 72 ('05)) I
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Subgroups at 1" =~ 0: Results

Topological objects that may account for confinement:

* Abelian monopoles (dual superconductor picture of
Confinement) (NAMBU, MANDELSTAM, 'T HOOFT)

® Center vortices ('t HooFT, NIELSEN, AMBJZRN, OLESEN)

Previous results:
Center vortices:

* Random vortex model = p/oc = 0.5

* SU(2) IMCG: p/o = 0.6 (Stack, TUCKER, WENSLEY NPB 639 ('02))
SU(2) LCG: p/o divergent (LANGFELD, REINHARDT, SCHAFKE PLB
504 ('01))

°* SU(3) MCG: p/o = 0.45 (LANGFELD PRD 69 ('04))
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Subgroups at 1" =~ 0: Results

Abelian monopoles in U(1) x U(1)-projection of Sp(2):
* m1(Sp(2)) =0 (no mp.), but m (U(1) x U(1)) = Z*

* Decompose the ‘plaquette holonomy’ U,,,, = exp(¢©,,)
after projection to U(1):

~

O = Ouw + 2mn,,.
—~—

€]—m, 7]
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Subgroups at 1" =~ 0: Results

Abelian monopoles in U(1) x U(1)-projection of Sp(2):
* m1(Sp(2)) =0 (no mp.), but m (U(1) x U(1)) = Z*

* Decompose the ‘plaquette holonomy’ U,,,, = exp(¢©,,)
after projection to U(1):

~

O = Ouw + 2mn,,.
—~—

€]—m, 7]

* Monopole density:

1
PCLSZEZ\M’
C
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Subgroups at 1" =~ 0: Results

Abelian monopoles in U(1) x U(1)-projection of Sp(2):
* m1(Sp(2)) =0 (no mp.), but m (U(1) x U(1)) = Z*

* Decompose the ‘plaquette holonomy’ U,,,, = exp(¢©,,)
after projection to U(1):

~

O = Ouw + 2mn,,.
—~—

€]—m, 7]

* Monopole density:

1
pa’ = — Z ‘6“’/>‘Vuny>\
C

(DEGRAND, TOUSSAINT PRD 22 (’80))
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Subgroups at 1" =~ 0: Results

Abelian monopoles in U(1) x U(1)-projection of Sp(2):

3 0.6]- } |
. a’ 7 7
hm p ~ 0.44 . 0.445 % |
a—s0 (0a2)3/2 %o.4zj % % |
= Physical relevance possible % 3
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Subgroups at 1" =~ 0: Results

Center vortices in center projection of Sp(2)

e Random vortex model:
2
o 2 = ([

a—0 aa2

|
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Subgroups at 1" =~ 0: Results

Center vortices in center projection of Sp(2)
* Lattice measurement:

0.4 T | T | T |
v-% indirekt via U(1)OU(2)
<}« indirekt via SU(2)
035~ % A direkte Zentrumseichung .
03 | ﬁi ........................... i% ]
o
S 0.25— —
S 3 g |
I
0.2F T .
B |
015} Bt ! i
.............. S e
01 | . | . | . | . |
7.1 7.2 7.3 7.4 7.5
B
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Subgroups at 1" =~ 0: Results

Center vortices in center projection of Sp(2)
* Lattice measurement:

04 ; . ; . : : : : :
v indirekt via U(1)OU(1)
<4< indirekt via SU(2)
035 A direkte Zentrumseichung *
B v
. IO a, Qo025+ % B
lim — < 0.5 B . <
O 2 02F g d -
a—0 oa |
K.
0.15 . " —
A Bog % S %
| | | | | | | | |
01 7.1 7.2 7.3 7.4 7.5

|
Confinement in Sp(2) lattice gauge theory — p.32/35



Subgroups at 1" =~ 0: Results

Center vortices in center projection of Sp(2)

e | attice measurement:;

2
lim 22 < 0.5
a—0 oa

* |nstead:

0.4 : . : . : . : . T

v indirekt via U(1)0U(1)
<< indirekt via SU(2)
035 A direkte Zentrumseichung *
03 ¥ T ¥ v
o
Lo25k -
A S 3 ]
02 R -
K.
el FE L S
B
| | | | | | | |
01 7.1 7.2 7.3 7.4 7.5

05— i
0.45
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I
Subgroups at 1" =~ 0: Results
v indirekt via U(1)JU(2) ' '
<< indirekt via SU(2) .
A--A direkte Zentrumseichung
0.65 % —
0.6 - % % ]
gﬁ 0.55 % % 1 - |
- % """""""""""""""""""""" e T <] 7]
05 % % 4 |
0.45 % N -
04 | . | . | . | . |
7.1 7.2 7.3 7.4 7.5
B
|
|
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Subgroups at 1" =~ 0: Results

Center vortices
* Do thin vortices locate thick vortices?

|
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Subgroups at 1" =~ 0: Results

Center vortices
* Do thin vortices locate thick vortices?

® Only if (DEL DEBBIO ET AL. PRD 55 ('97))
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Subgroups at 1" =~ 0: Results

Center vortices

* Do thin vortices locate thick vortices?

® Only if (DEL DEBBIO ET AL. PRD 55 ('97))

(—1)
W()(C) A(C)—o0
* This necessary condition %
s fulfilled in Sp(2) IICG s NS ]
(via the maximal Abelian T ;
subgroup): : ]
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Subgroups at 1" =~ 0: Results

Center vortices
* Do thin vortices locate thick vortices?

1_ —
CH-En=1
O---On=2
0.5 . |
e
o | g e
2 op BB |
= -y
0.5 x h
1+ % 1
| | | |
0 10 20 30 20
A
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|
Subgroups at 1" =~ 0: Results
. . M . . . .
Summing up: =2 (3) after six different g.f. + projections
"To-0suE)
o0 U(L)DUQ)
O U(1) )
v-v Z, via U(1)0U(1)
¢ Z, via SU(2) @
1+ AANZ, ED _|
5 §::::33311:::::::::::::::@::::::::::::::::::::::::@ ........................ o @ ........................ E
ba % .................................
e Qoo >
05 . e S i —
§I ......... g g @:m i
mmﬁgﬁs .......... A A
R
0 | | | | | |
7.1 7.2 7.3 7.4 7.5 7.6
B
|
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Conclusions

* Possibly some evidence for center relevance in Sp(2)
confinement mechanism from finite temperature
Investigations

° But: opy < 0.50 In three center projections
* Missing center vortex density ~ missing opyo;

* Maximal Abelian subgroup yields oy ~ 0.840
(and a monopole density scaling in physical units)

|
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