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Introduction

Topic of this work:
• Gluonic sector of Sp(2) lattice gauge theory

(quenched approximation)
• Def. of Sp(N):

◦ Symplectic groups constitute one of four types of
classical Lie groups.

◦ Alternative def.: Sp(N) as group of transformations
which preserve the inner product

〈u, v〉 = ū1v1 + . . . + ūNvN (u, v ∈

�N )
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Topic of this work:

• Remark: Two fundamental rep’s of Sp(2)
◦ 4D, pseudoreal (used here)
◦ 5D, real (Sp(2) ' SO(5))

• Why is the symplectic gauge group Sp(2) interesting?
◦ Sp(1) = SU(2)

Z(SU(N)) = N

Z(Sp(N)) = 2

◦ ⇒ Sp(N) with increasing N :
Gauge group grows (2N 2 + N generators),
center stays constant.

◦ Moreover: π1(Sp(N)/ 2) = 2.
◦ ⇒ Possible test of the center vortex mechanism of

confinement
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Introduction

Parametrization of the 4D fund. rep. of Sp(2):
• Our choice:

Sp(2) 3 g =

(

cos θ h1 sin θ h̄2h3

− sin θ h2h1 cos θ h3

)

hi ∈
{
h ∈

�2 : ‖h‖ = 1
}
' SU(2)

• Alternatively:

g =

(

W X

−X∗ W ∗

)

where W,X ∈ 2×2

and (WW † + XX† = ) ∧ (WXT = XW T )
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Confinement in Sp(2)

Static quark potential

+ Smearing
(Ui →

∏

a exp(ϑaCa)Ui,
ϑa ∈ O(ε) s. t. 〈Uij〉 → 1,
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Confinement in Sp(2)

Static quark potential
• Agreement with previous results obtained from

〈Φ~xΦ~y〉 = exp(NτV (~x − ~y))
(HOLLAND, PEPE, WIESE NPB (PS) 129 (’04))

7,1 7,2 7,3 7,4 7,5 7,6
β

0

0,1

0,2

0,3

σa
2

[HPW04b]
vorliegende Arbeit
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Finite temperature

Implementation:

• T = (Nτa(β))−1
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Implementation:

• T = (Nτa(β))−1

Polyakov loop:
• Worldline of a static quark propagating in periodic time

direction
• Polyakov loop on the lattice:

P (~x) =

Nτ−1∏

t=0

U0(~x, t), Φ(~x) =
1

N
tr P (~x)

• Order parameter in finite volumes:

Φ =
1

L3

∣
∣
∣
∣
∣

∑

~x

Φ(~x)

∣
∣
∣
∣
∣
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Finite temperature

Implementation:

• T = (Nτa(β))−1

Polyakov loop:
• Worldline of a static quark propagating in periodic time

direction
• Polyakov loop on the lattice:

P (~x) =

Nτ−1∏

t=0

U0(~x, t), Φ(~x) =
1

N
tr P (~x)

• More usual quantity:

Φ̃ =
1

L3

∑

~x

Φ(~x)
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Finite temperature

Finite V : Tunneling
between Φ̃ > 0 and Φ̃ < 0
⇒ always 〈Φ̃〉 = 0
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V → ∞:
• Tunneling suppressed

• ⇒ Φ̃ = 1
L3

∑

~x Φ(~x) serves as order parameter for
confinement:

〈Φ̃〉 6= 0 ⇔ center symmetry spontaneously broken

cp. |〈Φ̃〉| ∼ exp
(

−F̂QNτ

)
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Finite temperature

Important quantities:

• Susceptibility χ =
〈
Φ2
〉
− 〈Φ〉2

• Binder cumulant: gR ≡ 〈Φ4〉
〈Φ2〉2 − 3

◦ 2nd order PT ⇒ gc
R = −2

◦ 4th cumulant of Φ̃ (i.e. order parameter in infinite
volume)
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Finite temperature

Phase transition: Results (Nτ = 2)
• 1st order PT at β = 6.443(2)

(HOLLAND, PEPE, WIESE NPB (PS)

129 (’04): β = 6.4643(2))
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Phase transition: Results (Nτ = 2)
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Finite temperature
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Finite temperature

Polyakov loop holonomy near the phase transition

• GT of a link variable: Uµ(x) 7→ Ω(x)Uµ(x)Ω†(x + µ̂)
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Finite temperature

Polyakov loop holonomy near the phase transition

• GTs P (~x) 7→ Ω(~x, 0)P (~x)Ω†(~x, 0)
are conjugations (valid for any closed contour)

• ⇒ Local GT of P (~x) into Cartan subgroup always possible
(BLAU, THOMPSON COMMUN. MATH. PHYS. 171 (’95))

(H 3 g = diag (exp(iα3), exp(−iα3), exp(iα6), exp(−iα6)))
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Polyakov loop holonomy near the phase transition

• GTs P (~x) 7→ Ω(~x, 0)P (~x)Ω†(~x, 0)
are conjugations (valid for any closed contour)

• ⇒ Local GT of P (~x) into Cartan subgroup always possible
(BLAU, THOMPSON COMMUN. MATH. PHYS. 171 (’95))

(H 3 g = diag (exp(iα3), exp(−iα3), exp(iα6), exp(−iα6)))

• In case of Sp(2):
Reflections at roots
(here: Weyl group W )
are GTs
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Finite temperature
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Finite temperature

Polyakov loop holonomy near the phase transition

• ⇒ GT maps P to a definite
Weyl chamber H/W .
Constraint to bijective region
yields fundamental domain
F = H/W ∩M.
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Finite temperature

Polyakov loop holonomy near the phase transition
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β = 6.438
(slightly below PT)
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Subgroups at T ≈ 0: Method

General remarks:
• Partial gauge fixing necessary before projecting to

subgroup
(FABER, GREENSITE, OLEJŃIK JHEP 9901 for center and Abelian proj. of

SU(2))

Algorithms:

◦ Steepest ascent
◦ Simulated annealing (KIRKPATRICK ET AL. SCIENCE 220 (’83),

CERNY ’85)

• Projection (more precisely: link projection)

• Calculate σa2(β) of projected and ‘reduced’ config’s
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Subgroups at T ≈ 0: Method

Candidate subgroups:

• Diagonal SU(2):

(

g 0

0 g

)

, g ∈ SU(2)
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Subgroups at T ≈ 0: Method

Candidate subgroups:

• Diagonal SU(2):

(

g 0

0 g

)

, g ∈ SU(2)

• U(1) × U(1): diag (exp(iα3), exp(−iα3), exp(iα6), exp(−iα6))
Maximal Abelian Subgroup
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Subgroups at T ≈ 0: Method

Candidate subgroups:

• Diagonal SU(2):

(

g 0

0 g

)

, g ∈ SU(2)

• U(1) × U(1): diag (exp(iα3), exp(−iα3), exp(iα6), exp(−iα6))
Maximal Abelian Subgroup

• U(1)

• Z(Sp(2)) =

�
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◦ Direct center gauge
◦ Indirect CG via SU(2)

◦ Indirect CG via U(1) × U(1)
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Subgroups at T ≈ 0: Method

‘Ideal gauge fixing’ (LANGFELD PRD 69 (’04))

• Aim: Minimize distance of subgroup elements Vµ(x) from
gauge-transformed full gauge field UΩ

µ (x)

∑

x,µ

∥
∥UΩ

µ (x) − Vµ(x)
∥
∥

2 Ω,Vµ

−−−→ min

Confinement in Sp(2) lattice gauge theory – p.17/35



Subgroups at T ≈ 0: Method

‘Ideal gauge fixing’ (LANGFELD PRD 69 (’04))

• Aim: Minimize distance of subgroup elements Vµ(x) from
gauge-transformed full gauge field UΩ

µ (x)

∑

x,µ

∥
∥UΩ

µ (x) − Vµ(x)
∥
∥

2 Ω,Vµ

−−−→ min

⇐⇒ Maximize the quantity

R ≡
1

4NL4

∑

x,µ

Re tr
(

UΩ
µ (x)V †

µ (x)
)

∈ [0, 1]

by adjusting {Vµ(x)} and {Ω(x)} simultaneously
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Subgroups at T ≈ 0: Method

‘Ideal gauge fixing’
• Algorithm finds mere local maxima of R

⇒ Gribov problem on the lattice
◦ Gribov region: local maxima of the gff
◦ Fundamental modular region: global maxima

• Decomposition: U = UV †V ≡ ŨV

(; 〈W 〉 = 〈W̃ 〉〈WV 〉)
◦ Projected config’s: {Vµ(x)}

Hope: σproja
2(β) ≈ σa2(β)

◦ Reduced (removed) config’s:
{

UΩ
µ (x)V †

µ (x)
}

Hope: σr ≈ 0
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Subgroups at T ≈ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
• Steepest ascent.

◦ (Caveat: G.f. more sensitive than Smearing.)

Method:
◦ Optimal choice of Vµ(x)

◦ Choice of Ω(x) s. t. R increases
Comments:
◦ Sufficient for Sp(2) → SU(2)

(10 → 3 continuous d.o.f.).
◦ In case of smaller subgroups: Algorithm gets caught in

mere local maxima too easily.

Confinement in Sp(2) lattice gauge theory – p.19/35



Subgroups at T ≈ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
• Steepest ascent.

◦ (Caveat: G.f. more sensitive than Smearing.)
Method:
◦ Optimal choice of Vµ(x)

◦ Choice of Ω(x) s. t. R increases

Comments:
◦ Sufficient for Sp(2) → SU(2)

(10 → 3 continuous d.o.f.).
◦ In case of smaller subgroups: Algorithm gets caught in

mere local maxima too easily.

Confinement in Sp(2) lattice gauge theory – p.19/35



Subgroups at T ≈ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
• Steepest ascent.

◦ (Caveat: G.f. more sensitive than Smearing.)
Method:
◦ Optimal choice of Vµ(x)

◦ Choice of Ω(x) s. t. R increases
◦ Ω(x) → exp (

∑

a ϑaCa)Ω(x)

◦ Local change of gff:
r̃′ ≈ Re tr (ΩM)

︸ ︷︷ ︸

r̃

+ϑaRe tr (CaΩM)

where M =
∑7

ν=0 Uν(x)Ω†(x + ν̂)V †
ν (x)

Comments:
◦ Sufficient for Sp(2) → SU(2)

(10 → 3 continuous d.o.f.).
◦ In case of smaller subgroups: Algorithm gets caught in

mere local maxima too easily.
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◦ Choice of Ω(x) s. t. R increases
◦ Ω(x) → exp (

∑

a ϑaCa)Ω(x)

◦ Local change of gff:
r̃′ ≈ Re tr (ΩM)

︸ ︷︷ ︸

r̃

+ϑaRe tr (CaΩM)

◦ ϑa = εgfRe tr (CaΩM)

⇒ ∆r̃ > 0 (1st order)

Comments:
◦ Sufficient for Sp(2) → SU(2)

(10 → 3 continuous d.o.f.).
◦ In case of smaller subgroups: Algorithm gets caught in

mere local maxima too easily.
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Subgroups at T ≈ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
• Simulated annealing.

Method:
◦ Random Vµ(x) (e. g. ∈ {± }) accepted with

p = min
(

1, exp

(
βF

4
∆R̃

))

⇒ Allows downhill steps ( leaving local maxima)
Slow increase of βF =̂ cooling
(βF → ∞ =̂ steepest ascent)

◦ Update of Ω(x) as before
Comments:
◦ Much more time-consuming than steepest ascent
◦ Suitable method for center projection
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Subgroups at T ≈ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
• Simulated annealing

Comparison with other (experimental) algorithms:
◦ Raising & lowering βF several times
◦ Lowering βF when approaching a local maximum

0 5000 10000 15000
Zahl der Iterationen
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0.6
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Sägezahn
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Subgroups at T ≈ 0: Method

Implementation of ‘ideal gauge fixing’ condition:
• Abelian projection (to U(1) and U(1) × U(1)):

Small, but continuous subgroups. MC for V less obvious.
Steepest ascent also unsatisfactory. – Method:
◦ Optimal choice of Vµ(x).
◦ Simulated annealing for Ω(x).

• p = exp
(

βF

4 ∆S
)

, increase βF

• Adjust εgf s. t. acc. rate for new Ω(x) ≈ 50%
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Subgroups at T ≈ 0: Method
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Subgroups at T ≈ 0: Results

Results for SU(2)

• Sufficient for confinement: σproj ≈ σ

• Necessary for confinement: σr ≈ 0
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• Sufficient for confinement: σproj ≈ σ

• Necessary for confinement: σr ≈ 0
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Subgroups at T ≈ 0: Results

Results for SU(2)

• Evidence for nontriviality of ‘SU(2) dominance’:
◦ σproj/σ increases as a → 0

◦ Coulomb coefficient drops by 75% after partial g.f. and
projection

(remember: V = σR −
α

R
+ c)

◦ (Phase transition after projection at same temperature)

• Problems:
◦ SU(2) is too large a subgroup to be really interesting
◦ No direct identification of topological objects
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Subgroups at T ≈ 0: Results

Previous results on Abelian dominance:
• Abelian projection proposed by Mandelstam & ’t Hooft
• Connected to dual Meissner effect as hypothetical

mechanism of confinement
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Subgroups at T ≈ 0: Results

Previous results on Abelian dominance:
• Abelian projection proposed by Mandelstam & ’t Hooft
• Connected to dual Meissner effect as hypothetical

mechanism of confinement
• Numerical corroboration of Abelian dominance in SU(2):

σproj > 0.9σ (HIOKI ET AL. PLB 272 (’91); ILGENFRITZ ET AL. PRD 61 (’00))

• SU(3): σproj ≈ 0.8σ (STACK, TUCKER, WENSLEY NPB 639 (’02))

◦ Caveat: σproj drops when g.f. is improved
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Subgroups at T ≈ 0: Results

Results for Abelian subgroups:
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Subgroups at T ≈ 0: Results

Results for Abelian subgroups:
• σr ≈ 0

• σproj/σ ≈ 0.6 (U(1))
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Subgroups at T ≈ 0: Results

Results for Abelian subgroups:
• σr ≈ 0

• σproj/σ ≈ 0.6 (U(1)) resp. 0.84 (U(1) × U(1))

0 1 2 3

Rσ1/2

0

1

2

3

V
σ-1

/2
Fit, volle Sp(2)
Fit, U(1)⊗U(1)-Projektion
7.1, 2, U(1)⊗U(1)-Proj.
7.2, 2
7.3, 2
7.4, 2
7.5, 3
7.6, 2
Fit, U(1)⊗U(1) entfernt

Confinement in Sp(2) lattice gauge theory – p.26/35



Subgroups at T ≈ 0: Results

Previous results on center dominance:
• SU(2) MCG: σproj ≈ σ (e.g. DEL DEBBIO ET AL. PRD 55 (’97))

• SU(3):
◦ 100% in LCG (DE FORCRAND, PEPE NPB 598 (’01))

◦ 80% in IMCG via U(1) × U(1)
(STACK, TUCKER, WENSLEY NPB 639 (’02))

◦ 62% in MCG, 58% in ICG
(LANGFELD PRD 69 (’04), KUSTERER ’04)
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◦ 62% in MCG, 58% in ICG
(LANGFELD PRD 69 (’04), KUSTERER ’04)

Confinement in Sp(2) lattice gauge theory – p.27/35



Subgroups at T ≈ 0: Results

Previous results on center dominance:
• SU(2) MCG: σproj ≈ σ (e.g. DEL DEBBIO ET AL. PRD 55 (’97))

• SU(3):
◦ 100% in LCG (DE FORCRAND, PEPE NPB 598 (’01))

◦ 80% in IMCG via U(1) × U(1)
(STACK, TUCKER, WENSLEY NPB 639 (’02))

◦ 62% in MCG, 58% in ICG
(LANGFELD PRD 69 (’04), KUSTERER ’04)

Confinement in Sp(2) lattice gauge theory – p.27/35



Subgroups at T ≈ 0: Results

Previous results on center dominance:
• SU(2) MCG: σproj ≈ σ (e.g. DEL DEBBIO ET AL. PRD 55 (’97))

• SU(3):
◦ 100% in LCG (DE FORCRAND, PEPE NPB 598 (’01))

◦ 80% in IMCG via U(1) × U(1)
(STACK, TUCKER, WENSLEY NPB 639 (’02))

◦ 62% in MCG, 58% in ICG
(LANGFELD PRD 69 (’04), KUSTERER ’04)

Confinement in Sp(2) lattice gauge theory – p.27/35



Subgroups at T ≈ 0: Results

Center dominance in Sp(2) not to the same extent
as in SU(2) and SU(3)!

• Direct ideal center gauge: σproj ≈ 0.3σ

◦ Caution: adequate g.f. proves difficult

• Indirect ICG via SU(2): σproj ≈ 0.43σ

• IICG via U(1) × U(1):
σproj ≈ 0.49σ
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Subgroups at T ≈ 0: Results

Topological objects that may account for confinement:
• Abelian monopoles (dual superconductor picture of

confinement) (NAMBU, MANDELSTAM, ’T HOOFT)

• Center vortices (’T HOOFT, NIELSEN, AMBJØRN, OLESEN)

Previous results:
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Topological objects that may account for confinement:
• Abelian monopoles (dual superconductor picture of

confinement) (NAMBU, MANDELSTAM, ’T HOOFT)

• Center vortices (’T HOOFT, NIELSEN, AMBJØRN, OLESEN)

Previous results:
Monopoles:

• SU(2) MAG:
〈
WU(1)

〉
≈ 〈Wmon〉 〈Wph〉

⇒ VU(1)(r) ≈ Vmon(r) + Vph(r)
(SHIBA, SUZUKI PLB 333 (’94); STACK, NEIMAN, WENSLEY PRD 50 (’94))

• Monopole potential reproduces full σ (BALI ET AL. PRD 54 (’96))

• SU(2) MAG: ρ/σ3/2 = 0.65
(BORNYAKOV, MÜLLER-PREUSSKER NPB (PS) 106 (’02))

• Finite continuum limit of ρ in SU(2) LAG doubtful (BORNYAKOV,

ILGENFRITZ, MÜLLER-PREUSSKER PRD 72 (’05))
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Subgroups at T ≈ 0: Results

Topological objects that may account for confinement:
• Abelian monopoles (dual superconductor picture of

confinement) (NAMBU, MANDELSTAM, ’T HOOFT)

• Center vortices (’T HOOFT, NIELSEN, AMBJØRN, OLESEN)

Previous results:
Center vortices:

• Random vortex model ⇒ ρ/σ = 0.5

• SU(2) IMCG: ρ/σ = 0.6 (STACK, TUCKER, WENSLEY NPB 639 (’02))

SU(2) LCG: ρ/σ divergent (LANGFELD, REINHARDT, SCHÄFKE PLB

504 (’01))

• SU(3) MCG: ρ/σ = 0.45 (LANGFELD PRD 69 (’04))
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Subgroups at T ≈ 0: Results

Abelian monopoles in U(1) × U(1)-projection of Sp(2):

• π1(Sp(2)) = 0 (no mp.), but π1(U(1) × U(1)) =
�2

• Decompose the ‘plaquette holonomy’ Uµν = exp(iΘµν)

after projection to U(1):

Θµν = Θ̃µν
︸︷︷︸

∈]−π,π]

+ 2πnµν .
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• π1(Sp(2)) = 0 (no mp.), but π1(U(1) × U(1)) =
�2

• Decompose the ‘plaquette holonomy’ Uµν = exp(iΘµν)

after projection to U(1):

Θµν = Θ̃µν
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∈]−π,π]

+ 2πnµν .

• Monopole density:

ρa3 =
1

4L4

∑

C

∣
∣
∣εµνλ∇µnνλ

∣
∣
∣

(DEGRAND, TOUSSAINT PRD 22 (’80))
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Subgroups at T ≈ 0: Results

Abelian monopoles in U(1) × U(1)-projection of Sp(2):

lim
a→0

ρa3

(σa2)3/2
≈ 0.44

⇒ Physical relevance possible
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Subgroups at T ≈ 0: Results

Center vortices in center projection of Sp(2)

• Random vortex model:

lim
a→0

ρa2

σa2
= 0.5

• Lattice measurement:

lim
a→0

ρa2

σa2
< 0.5
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Subgroups at T ≈ 0: Results

Center vortices
• Do thin vortices locate thick vortices?

• Only if (DEL DEBBIO ET AL. PRD 55 (’97))

Wn(C)

W0(C)
−−−−−−→
A(C)→∞

(−1)n

• This necessary condition
is fulfilled in Sp(2) IICG
(via the maximal Abelian
subgroup):
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Subgroups at T ≈ 0: Results

Summing up: σproj

σ (β) after six different g.f. + projections

7.1 7.2 7.3 7.4 7.5 7.6
β

0

0.5

1

σ pr
oj
/σ

SU(2)
U(1)⊗U(1)
U(1)
Z2 via U(1)⊗U(1)

Z2 via SU(2)

Z2
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Conclusions

• Possibly some evidence for center relevance in Sp(2)
confinement mechanism from finite temperature
investigations

• But: σproj < 0.5σ in three center projections

• Missing center vortex density ≈̂ missing σproj

• Maximal Abelian subgroup yields σproj ≈ 0.84σ

(and a monopole density scaling in physical units)
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